Metamath Proof Explorer


Theorem exnalimn

Description: Existential quantification of a conjunction expressed with only primitive symbols ( -> , -. , A. ). (Contributed by NM, 10-May-1993) State the most general instance. (Revised by BJ, 29-Sep-2019)

Ref Expression
Assertion exnalimn x φ ψ ¬ x φ ¬ ψ

Proof

Step Hyp Ref Expression
1 alinexa x φ ¬ ψ ¬ x φ ψ
2 1 con2bii x φ ψ ¬ x φ ¬ ψ