Metamath Proof Explorer


Theorem exopxfr

Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis exopxfr.1 x = y z φ ψ
Assertion exopxfr x V × V φ y z ψ

Proof

Step Hyp Ref Expression
1 exopxfr.1 x = y z φ ψ
2 1 rexxp x V × V φ y V z V ψ
3 rexv y V z V ψ y z V ψ
4 rexv z V ψ z ψ
5 4 exbii y z V ψ y z ψ
6 2 3 5 3bitri x V × V φ y z ψ