| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq2d |
|
| 3 |
|
oveq2 |
|
| 4 |
3
|
oveq2d |
|
| 5 |
2 4
|
eqeq12d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
oveq2d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
8 10
|
eqeq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
oveq2d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
oveq2 |
|
| 22 |
21
|
oveq2d |
|
| 23 |
20 22
|
eqeq12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
nn0cn |
|
| 26 |
25
|
addridd |
|
| 27 |
26
|
adantl |
|
| 28 |
27
|
oveq2d |
|
| 29 |
|
expcl |
|
| 30 |
29
|
mulridd |
|
| 31 |
28 30
|
eqtr4d |
|
| 32 |
|
exp0 |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
oveq2d |
|
| 35 |
31 34
|
eqtr4d |
|
| 36 |
|
oveq1 |
|
| 37 |
|
nn0cn |
|
| 38 |
|
ax-1cn |
|
| 39 |
|
addass |
|
| 40 |
38 39
|
mp3an3 |
|
| 41 |
25 37 40
|
syl2an |
|
| 42 |
41
|
adantll |
|
| 43 |
42
|
oveq2d |
|
| 44 |
|
simpll |
|
| 45 |
|
nn0addcl |
|
| 46 |
45
|
adantll |
|
| 47 |
|
expp1 |
|
| 48 |
44 46 47
|
syl2anc |
|
| 49 |
43 48
|
eqtr3d |
|
| 50 |
|
expp1 |
|
| 51 |
50
|
adantlr |
|
| 52 |
51
|
oveq2d |
|
| 53 |
29
|
adantr |
|
| 54 |
|
expcl |
|
| 55 |
54
|
adantlr |
|
| 56 |
53 55 44
|
mulassd |
|
| 57 |
52 56
|
eqtr4d |
|
| 58 |
49 57
|
eqeq12d |
|
| 59 |
36 58
|
imbitrrid |
|
| 60 |
59
|
expcom |
|
| 61 |
60
|
a2d |
|
| 62 |
6 12 18 24 35 61
|
nn0ind |
|
| 63 |
62
|
expdcom |
|
| 64 |
63
|
3imp |
|