Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq2d |
|
3 |
|
oveq2 |
|
4 |
3
|
oveq2d |
|
5 |
2 4
|
eqeq12d |
|
6 |
5
|
imbi2d |
|
7 |
|
oveq2 |
|
8 |
7
|
oveq2d |
|
9 |
|
oveq2 |
|
10 |
9
|
oveq2d |
|
11 |
8 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
oveq2d |
|
15 |
|
oveq2 |
|
16 |
15
|
oveq2d |
|
17 |
14 16
|
eqeq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
oveq2 |
|
20 |
19
|
oveq2d |
|
21 |
|
oveq2 |
|
22 |
21
|
oveq2d |
|
23 |
20 22
|
eqeq12d |
|
24 |
23
|
imbi2d |
|
25 |
|
nn0cn |
|
26 |
25
|
addid1d |
|
27 |
26
|
adantl |
|
28 |
27
|
oveq2d |
|
29 |
|
expcl |
|
30 |
29
|
mulid1d |
|
31 |
28 30
|
eqtr4d |
|
32 |
|
exp0 |
|
33 |
32
|
adantr |
|
34 |
33
|
oveq2d |
|
35 |
31 34
|
eqtr4d |
|
36 |
|
oveq1 |
|
37 |
|
nn0cn |
|
38 |
|
ax-1cn |
|
39 |
|
addass |
|
40 |
38 39
|
mp3an3 |
|
41 |
25 37 40
|
syl2an |
|
42 |
41
|
adantll |
|
43 |
42
|
oveq2d |
|
44 |
|
simpll |
|
45 |
|
nn0addcl |
|
46 |
45
|
adantll |
|
47 |
|
expp1 |
|
48 |
44 46 47
|
syl2anc |
|
49 |
43 48
|
eqtr3d |
|
50 |
|
expp1 |
|
51 |
50
|
adantlr |
|
52 |
51
|
oveq2d |
|
53 |
29
|
adantr |
|
54 |
|
expcl |
|
55 |
54
|
adantlr |
|
56 |
53 55 44
|
mulassd |
|
57 |
52 56
|
eqtr4d |
|
58 |
49 57
|
eqeq12d |
|
59 |
36 58
|
syl5ibr |
|
60 |
59
|
expcom |
|
61 |
60
|
a2d |
|
62 |
6 12 18 24 35 61
|
nn0ind |
|
63 |
62
|
expdcom |
|
64 |
63
|
3imp |
|