Metamath Proof Explorer


Theorem expadd

Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by NM, 30-Nov-2004)

Ref Expression
Assertion expadd A M 0 N 0 A M + N = A M A N

Proof

Step Hyp Ref Expression
1 oveq2 j = 0 M + j = M + 0
2 1 oveq2d j = 0 A M + j = A M + 0
3 oveq2 j = 0 A j = A 0
4 3 oveq2d j = 0 A M A j = A M A 0
5 2 4 eqeq12d j = 0 A M + j = A M A j A M + 0 = A M A 0
6 5 imbi2d j = 0 A M 0 A M + j = A M A j A M 0 A M + 0 = A M A 0
7 oveq2 j = k M + j = M + k
8 7 oveq2d j = k A M + j = A M + k
9 oveq2 j = k A j = A k
10 9 oveq2d j = k A M A j = A M A k
11 8 10 eqeq12d j = k A M + j = A M A j A M + k = A M A k
12 11 imbi2d j = k A M 0 A M + j = A M A j A M 0 A M + k = A M A k
13 oveq2 j = k + 1 M + j = M + k + 1
14 13 oveq2d j = k + 1 A M + j = A M + k + 1
15 oveq2 j = k + 1 A j = A k + 1
16 15 oveq2d j = k + 1 A M A j = A M A k + 1
17 14 16 eqeq12d j = k + 1 A M + j = A M A j A M + k + 1 = A M A k + 1
18 17 imbi2d j = k + 1 A M 0 A M + j = A M A j A M 0 A M + k + 1 = A M A k + 1
19 oveq2 j = N M + j = M + N
20 19 oveq2d j = N A M + j = A M + N
21 oveq2 j = N A j = A N
22 21 oveq2d j = N A M A j = A M A N
23 20 22 eqeq12d j = N A M + j = A M A j A M + N = A M A N
24 23 imbi2d j = N A M 0 A M + j = A M A j A M 0 A M + N = A M A N
25 nn0cn M 0 M
26 25 addid1d M 0 M + 0 = M
27 26 adantl A M 0 M + 0 = M
28 27 oveq2d A M 0 A M + 0 = A M
29 expcl A M 0 A M
30 29 mulid1d A M 0 A M 1 = A M
31 28 30 eqtr4d A M 0 A M + 0 = A M 1
32 exp0 A A 0 = 1
33 32 adantr A M 0 A 0 = 1
34 33 oveq2d A M 0 A M A 0 = A M 1
35 31 34 eqtr4d A M 0 A M + 0 = A M A 0
36 oveq1 A M + k = A M A k A M + k A = A M A k A
37 nn0cn k 0 k
38 ax-1cn 1
39 addass M k 1 M + k + 1 = M + k + 1
40 38 39 mp3an3 M k M + k + 1 = M + k + 1
41 25 37 40 syl2an M 0 k 0 M + k + 1 = M + k + 1
42 41 adantll A M 0 k 0 M + k + 1 = M + k + 1
43 42 oveq2d A M 0 k 0 A M + k + 1 = A M + k + 1
44 simpll A M 0 k 0 A
45 nn0addcl M 0 k 0 M + k 0
46 45 adantll A M 0 k 0 M + k 0
47 expp1 A M + k 0 A M + k + 1 = A M + k A
48 44 46 47 syl2anc A M 0 k 0 A M + k + 1 = A M + k A
49 43 48 eqtr3d A M 0 k 0 A M + k + 1 = A M + k A
50 expp1 A k 0 A k + 1 = A k A
51 50 adantlr A M 0 k 0 A k + 1 = A k A
52 51 oveq2d A M 0 k 0 A M A k + 1 = A M A k A
53 29 adantr A M 0 k 0 A M
54 expcl A k 0 A k
55 54 adantlr A M 0 k 0 A k
56 53 55 44 mulassd A M 0 k 0 A M A k A = A M A k A
57 52 56 eqtr4d A M 0 k 0 A M A k + 1 = A M A k A
58 49 57 eqeq12d A M 0 k 0 A M + k + 1 = A M A k + 1 A M + k A = A M A k A
59 36 58 syl5ibr A M 0 k 0 A M + k = A M A k A M + k + 1 = A M A k + 1
60 59 expcom k 0 A M 0 A M + k = A M A k A M + k + 1 = A M A k + 1
61 60 a2d k 0 A M 0 A M + k = A M A k A M 0 A M + k + 1 = A M A k + 1
62 6 12 18 24 35 61 nn0ind N 0 A M 0 A M + N = A M A N
63 62 expdcom A M 0 N 0 A M + N = A M A N
64 63 3imp A M 0 N 0 A M + N = A M A N