Metamath Proof Explorer


Theorem expaddd

Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
expcld.2 φ N 0
expaddd.2 φ M 0
Assertion expaddd φ A M + N = A M A N

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 expcld.2 φ N 0
3 expaddd.2 φ M 0
4 expadd A M 0 N 0 A M + N = A M A N
5 1 3 2 4 syl3anc φ A M + N = A M A N