Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
expaddd
Metamath Proof Explorer
Description: Sum of exponents law for nonnegative integer exponentiation.
Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario
Carneiro , 28-May-2016)
Ref
Expression
Hypotheses
expcld.1
⊢ φ → A ∈ ℂ
expcld.2
⊢ φ → N ∈ ℕ 0
expaddd.2
⊢ φ → M ∈ ℕ 0
Assertion
expaddd
⊢ φ → A M + N = A M ⁢ A N
Proof
Step
Hyp
Ref
Expression
1
expcld.1
⊢ φ → A ∈ ℂ
2
expcld.2
⊢ φ → N ∈ ℕ 0
3
expaddd.2
⊢ φ → M ∈ ℕ 0
4
expadd
⊢ A ∈ ℂ ∧ M ∈ ℕ 0 ∧ N ∈ ℕ 0 → A M + N = A M ⁢ A N
5
1 3 2 4
syl3anc
⊢ φ → A M + N = A M ⁢ A N