Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0nn |
|
2 |
|
elznn0nn |
|
3 |
|
expadd |
|
4 |
3
|
3expia |
|
5 |
4
|
adantlr |
|
6 |
|
expaddzlem |
|
7 |
6
|
3expia |
|
8 |
5 7
|
jaodan |
|
9 |
|
expaddzlem |
|
10 |
|
simp3 |
|
11 |
10
|
nn0cnd |
|
12 |
|
simp2l |
|
13 |
12
|
recnd |
|
14 |
11 13
|
addcomd |
|
15 |
14
|
oveq2d |
|
16 |
|
simp1l |
|
17 |
|
expcl |
|
18 |
16 10 17
|
syl2anc |
|
19 |
|
simp1r |
|
20 |
13
|
negnegd |
|
21 |
|
simp2r |
|
22 |
21
|
nnnn0d |
|
23 |
|
nn0negz |
|
24 |
22 23
|
syl |
|
25 |
20 24
|
eqeltrrd |
|
26 |
|
expclz |
|
27 |
16 19 25 26
|
syl3anc |
|
28 |
18 27
|
mulcomd |
|
29 |
9 15 28
|
3eqtr4d |
|
30 |
29
|
3expia |
|
31 |
30
|
impancom |
|
32 |
|
simp2l |
|
33 |
32
|
recnd |
|
34 |
|
simp3l |
|
35 |
34
|
recnd |
|
36 |
33 35
|
negdid |
|
37 |
36
|
oveq2d |
|
38 |
|
simp1l |
|
39 |
|
simp2r |
|
40 |
39
|
nnnn0d |
|
41 |
|
simp3r |
|
42 |
41
|
nnnn0d |
|
43 |
|
expadd |
|
44 |
38 40 42 43
|
syl3anc |
|
45 |
37 44
|
eqtrd |
|
46 |
45
|
oveq2d |
|
47 |
|
1t1e1 |
|
48 |
47
|
oveq1i |
|
49 |
46 48
|
eqtr4di |
|
50 |
|
expcl |
|
51 |
38 40 50
|
syl2anc |
|
52 |
|
simp1r |
|
53 |
40
|
nn0zd |
|
54 |
|
expne0i |
|
55 |
38 52 53 54
|
syl3anc |
|
56 |
|
expcl |
|
57 |
38 42 56
|
syl2anc |
|
58 |
42
|
nn0zd |
|
59 |
|
expne0i |
|
60 |
38 52 58 59
|
syl3anc |
|
61 |
|
ax-1cn |
|
62 |
|
divmuldiv |
|
63 |
61 61 62
|
mpanl12 |
|
64 |
51 55 57 60 63
|
syl22anc |
|
65 |
49 64
|
eqtr4d |
|
66 |
33 35
|
addcld |
|
67 |
40 42
|
nn0addcld |
|
68 |
36 67
|
eqeltrd |
|
69 |
|
expneg2 |
|
70 |
38 66 68 69
|
syl3anc |
|
71 |
|
expneg2 |
|
72 |
38 33 40 71
|
syl3anc |
|
73 |
|
expneg2 |
|
74 |
38 35 42 73
|
syl3anc |
|
75 |
72 74
|
oveq12d |
|
76 |
65 70 75
|
3eqtr4d |
|
77 |
76
|
3expia |
|
78 |
31 77
|
jaodan |
|
79 |
8 78
|
jaod |
|
80 |
2 79
|
sylan2b |
|
81 |
1 80
|
syl5bi |
|
82 |
81
|
impr |
|