| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
|
| 2 |
|
simp3 |
|
| 3 |
|
expcl |
|
| 4 |
1 2 3
|
syl2anc |
|
| 5 |
|
simp2r |
|
| 6 |
5
|
nnnn0d |
|
| 7 |
|
expcl |
|
| 8 |
1 6 7
|
syl2anc |
|
| 9 |
|
simp1r |
|
| 10 |
5
|
nnzd |
|
| 11 |
|
expne0i |
|
| 12 |
1 9 10 11
|
syl3anc |
|
| 13 |
4 8 12
|
divrec2d |
|
| 14 |
|
simp2l |
|
| 15 |
14
|
recnd |
|
| 16 |
15
|
negnegd |
|
| 17 |
|
nnnegz |
|
| 18 |
5 17
|
syl |
|
| 19 |
16 18
|
eqeltrrd |
|
| 20 |
2
|
nn0zd |
|
| 21 |
19 20
|
zaddcld |
|
| 22 |
|
expclz |
|
| 23 |
1 9 21 22
|
syl3anc |
|
| 24 |
23
|
adantr |
|
| 25 |
8
|
adantr |
|
| 26 |
12
|
adantr |
|
| 27 |
24 25 26
|
divcan4d |
|
| 28 |
1
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
6
|
adantr |
|
| 31 |
|
expadd |
|
| 32 |
28 29 30 31
|
syl3anc |
|
| 33 |
21
|
zcnd |
|
| 34 |
33 15
|
negsubd |
|
| 35 |
2
|
nn0cnd |
|
| 36 |
15 35
|
pncan2d |
|
| 37 |
34 36
|
eqtrd |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
oveq2d |
|
| 40 |
32 39
|
eqtr3d |
|
| 41 |
40
|
oveq1d |
|
| 42 |
27 41
|
eqtr3d |
|
| 43 |
1
|
adantr |
|
| 44 |
33
|
adantr |
|
| 45 |
|
simpr |
|
| 46 |
|
expneg2 |
|
| 47 |
43 44 45 46
|
syl3anc |
|
| 48 |
21
|
znegcld |
|
| 49 |
|
expclz |
|
| 50 |
1 9 48 49
|
syl3anc |
|
| 51 |
50
|
adantr |
|
| 52 |
4
|
adantr |
|
| 53 |
|
expne0i |
|
| 54 |
1 9 20 53
|
syl3anc |
|
| 55 |
54
|
adantr |
|
| 56 |
51 52 55
|
divcan4d |
|
| 57 |
2
|
adantr |
|
| 58 |
|
expadd |
|
| 59 |
43 45 57 58
|
syl3anc |
|
| 60 |
15 35
|
negdi2d |
|
| 61 |
60
|
oveq1d |
|
| 62 |
15
|
negcld |
|
| 63 |
62 35
|
npcand |
|
| 64 |
61 63
|
eqtrd |
|
| 65 |
64
|
adantr |
|
| 66 |
65
|
oveq2d |
|
| 67 |
59 66
|
eqtr3d |
|
| 68 |
67
|
oveq1d |
|
| 69 |
56 68
|
eqtr3d |
|
| 70 |
69
|
oveq2d |
|
| 71 |
8 4 12 54
|
recdivd |
|
| 72 |
71
|
adantr |
|
| 73 |
70 72
|
eqtrd |
|
| 74 |
47 73
|
eqtrd |
|
| 75 |
|
elznn0 |
|
| 76 |
75
|
simprbi |
|
| 77 |
21 76
|
syl |
|
| 78 |
42 74 77
|
mpjaodan |
|
| 79 |
|
expneg2 |
|
| 80 |
1 15 6 79
|
syl3anc |
|
| 81 |
80
|
oveq1d |
|
| 82 |
13 78 81
|
3eqtr4d |
|