Metamath Proof Explorer


Theorem expaddzlem

Description: Lemma for expaddz . (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expaddzlem A A 0 M M N 0 A M + N = A M A N

Proof

Step Hyp Ref Expression
1 simp1l A A 0 M M N 0 A
2 simp3 A A 0 M M N 0 N 0
3 expcl A N 0 A N
4 1 2 3 syl2anc A A 0 M M N 0 A N
5 simp2r A A 0 M M N 0 M
6 5 nnnn0d A A 0 M M N 0 M 0
7 expcl A M 0 A M
8 1 6 7 syl2anc A A 0 M M N 0 A M
9 simp1r A A 0 M M N 0 A 0
10 5 nnzd A A 0 M M N 0 M
11 expne0i A A 0 M A M 0
12 1 9 10 11 syl3anc A A 0 M M N 0 A M 0
13 4 8 12 divrec2d A A 0 M M N 0 A N A M = 1 A M A N
14 simp2l A A 0 M M N 0 M
15 14 recnd A A 0 M M N 0 M
16 15 negnegd A A 0 M M N 0 -M = M
17 nnnegz M -M
18 5 17 syl A A 0 M M N 0 -M
19 16 18 eqeltrrd A A 0 M M N 0 M
20 2 nn0zd A A 0 M M N 0 N
21 19 20 zaddcld A A 0 M M N 0 M + N
22 expclz A A 0 M + N A M + N
23 1 9 21 22 syl3anc A A 0 M M N 0 A M + N
24 23 adantr A A 0 M M N 0 M + N 0 A M + N
25 8 adantr A A 0 M M N 0 M + N 0 A M
26 12 adantr A A 0 M M N 0 M + N 0 A M 0
27 24 25 26 divcan4d A A 0 M M N 0 M + N 0 A M + N A M A M = A M + N
28 1 adantr A A 0 M M N 0 M + N 0 A
29 simpr A A 0 M M N 0 M + N 0 M + N 0
30 6 adantr A A 0 M M N 0 M + N 0 M 0
31 expadd A M + N 0 M 0 A M + N + -M = A M + N A M
32 28 29 30 31 syl3anc A A 0 M M N 0 M + N 0 A M + N + -M = A M + N A M
33 21 zcnd A A 0 M M N 0 M + N
34 33 15 negsubd A A 0 M M N 0 M + N + -M = M + N - M
35 2 nn0cnd A A 0 M M N 0 N
36 15 35 pncan2d A A 0 M M N 0 M + N - M = N
37 34 36 eqtrd A A 0 M M N 0 M + N + -M = N
38 37 adantr A A 0 M M N 0 M + N 0 M + N + -M = N
39 38 oveq2d A A 0 M M N 0 M + N 0 A M + N + -M = A N
40 32 39 eqtr3d A A 0 M M N 0 M + N 0 A M + N A M = A N
41 40 oveq1d A A 0 M M N 0 M + N 0 A M + N A M A M = A N A M
42 27 41 eqtr3d A A 0 M M N 0 M + N 0 A M + N = A N A M
43 1 adantr A A 0 M M N 0 M + N 0 A
44 33 adantr A A 0 M M N 0 M + N 0 M + N
45 simpr A A 0 M M N 0 M + N 0 M + N 0
46 expneg2 A M + N M + N 0 A M + N = 1 A M + N
47 43 44 45 46 syl3anc A A 0 M M N 0 M + N 0 A M + N = 1 A M + N
48 21 znegcld A A 0 M M N 0 M + N
49 expclz A A 0 M + N A M + N
50 1 9 48 49 syl3anc A A 0 M M N 0 A M + N
51 50 adantr A A 0 M M N 0 M + N 0 A M + N
52 4 adantr A A 0 M M N 0 M + N 0 A N
53 expne0i A A 0 N A N 0
54 1 9 20 53 syl3anc A A 0 M M N 0 A N 0
55 54 adantr A A 0 M M N 0 M + N 0 A N 0
56 51 52 55 divcan4d A A 0 M M N 0 M + N 0 A M + N A N A N = A M + N
57 2 adantr A A 0 M M N 0 M + N 0 N 0
58 expadd A M + N 0 N 0 A - M + N + N = A M + N A N
59 43 45 57 58 syl3anc A A 0 M M N 0 M + N 0 A - M + N + N = A M + N A N
60 15 35 negdi2d A A 0 M M N 0 M + N = - M - N
61 60 oveq1d A A 0 M M N 0 - M + N + N = -M - N + N
62 15 negcld A A 0 M M N 0 M
63 62 35 npcand A A 0 M M N 0 -M - N + N = M
64 61 63 eqtrd A A 0 M M N 0 - M + N + N = M
65 64 adantr A A 0 M M N 0 M + N 0 - M + N + N = M
66 65 oveq2d A A 0 M M N 0 M + N 0 A - M + N + N = A M
67 59 66 eqtr3d A A 0 M M N 0 M + N 0 A M + N A N = A M
68 67 oveq1d A A 0 M M N 0 M + N 0 A M + N A N A N = A M A N
69 56 68 eqtr3d A A 0 M M N 0 M + N 0 A M + N = A M A N
70 69 oveq2d A A 0 M M N 0 M + N 0 1 A M + N = 1 A M A N
71 8 4 12 54 recdivd A A 0 M M N 0 1 A M A N = A N A M
72 71 adantr A A 0 M M N 0 M + N 0 1 A M A N = A N A M
73 70 72 eqtrd A A 0 M M N 0 M + N 0 1 A M + N = A N A M
74 47 73 eqtrd A A 0 M M N 0 M + N 0 A M + N = A N A M
75 elznn0 M + N M + N M + N 0 M + N 0
76 75 simprbi M + N M + N 0 M + N 0
77 21 76 syl A A 0 M M N 0 M + N 0 M + N 0
78 42 74 77 mpjaodan A A 0 M M N 0 A M + N = A N A M
79 expneg2 A M M 0 A M = 1 A M
80 1 15 6 79 syl3anc A A 0 M M N 0 A M = 1 A M
81 80 oveq1d A A 0 M M N 0 A M A N = 1 A M A N
82 13 78 81 3eqtr4d A A 0 M M N 0 A M + N = A M A N