Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
|
2 |
|
simp3 |
|
3 |
|
expcl |
|
4 |
1 2 3
|
syl2anc |
|
5 |
|
simp2r |
|
6 |
5
|
nnnn0d |
|
7 |
|
expcl |
|
8 |
1 6 7
|
syl2anc |
|
9 |
|
simp1r |
|
10 |
5
|
nnzd |
|
11 |
|
expne0i |
|
12 |
1 9 10 11
|
syl3anc |
|
13 |
4 8 12
|
divrec2d |
|
14 |
|
simp2l |
|
15 |
14
|
recnd |
|
16 |
15
|
negnegd |
|
17 |
|
nnnegz |
|
18 |
5 17
|
syl |
|
19 |
16 18
|
eqeltrrd |
|
20 |
2
|
nn0zd |
|
21 |
19 20
|
zaddcld |
|
22 |
|
expclz |
|
23 |
1 9 21 22
|
syl3anc |
|
24 |
23
|
adantr |
|
25 |
8
|
adantr |
|
26 |
12
|
adantr |
|
27 |
24 25 26
|
divcan4d |
|
28 |
1
|
adantr |
|
29 |
|
simpr |
|
30 |
6
|
adantr |
|
31 |
|
expadd |
|
32 |
28 29 30 31
|
syl3anc |
|
33 |
21
|
zcnd |
|
34 |
33 15
|
negsubd |
|
35 |
2
|
nn0cnd |
|
36 |
15 35
|
pncan2d |
|
37 |
34 36
|
eqtrd |
|
38 |
37
|
adantr |
|
39 |
38
|
oveq2d |
|
40 |
32 39
|
eqtr3d |
|
41 |
40
|
oveq1d |
|
42 |
27 41
|
eqtr3d |
|
43 |
1
|
adantr |
|
44 |
33
|
adantr |
|
45 |
|
simpr |
|
46 |
|
expneg2 |
|
47 |
43 44 45 46
|
syl3anc |
|
48 |
21
|
znegcld |
|
49 |
|
expclz |
|
50 |
1 9 48 49
|
syl3anc |
|
51 |
50
|
adantr |
|
52 |
4
|
adantr |
|
53 |
|
expne0i |
|
54 |
1 9 20 53
|
syl3anc |
|
55 |
54
|
adantr |
|
56 |
51 52 55
|
divcan4d |
|
57 |
2
|
adantr |
|
58 |
|
expadd |
|
59 |
43 45 57 58
|
syl3anc |
|
60 |
15 35
|
negdi2d |
|
61 |
60
|
oveq1d |
|
62 |
15
|
negcld |
|
63 |
62 35
|
npcand |
|
64 |
61 63
|
eqtrd |
|
65 |
64
|
adantr |
|
66 |
65
|
oveq2d |
|
67 |
59 66
|
eqtr3d |
|
68 |
67
|
oveq1d |
|
69 |
56 68
|
eqtr3d |
|
70 |
69
|
oveq2d |
|
71 |
8 4 12 54
|
recdivd |
|
72 |
71
|
adantr |
|
73 |
70 72
|
eqtrd |
|
74 |
47 73
|
eqtrd |
|
75 |
|
elznn0 |
|
76 |
75
|
simprbi |
|
77 |
21 76
|
syl |
|
78 |
42 74 77
|
mpjaodan |
|
79 |
|
expneg2 |
|
80 |
1 15 6 79
|
syl3anc |
|
81 |
80
|
oveq1d |
|
82 |
13 78 81
|
3eqtr4d |
|