Metamath Proof Explorer


Theorem expcan

Description: Cancellation law for integer exponentiation of reals. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expcan AMN1<AAM=ANM=N

Proof

Step Hyp Ref Expression
1 oveq2 x=yAx=Ay
2 oveq2 x=MAx=AM
3 oveq2 x=NAx=AN
4 zssre
5 simpl A1<AA
6 0red A1<A0
7 1red A1<A1
8 0lt1 0<1
9 8 a1i A1<A0<1
10 simpr A1<A1<A
11 6 7 5 9 10 lttrd A1<A0<A
12 5 11 elrpd A1<AA+
13 rpexpcl A+xAx+
14 12 13 sylan A1<AxAx+
15 14 rpred A1<AxAx
16 simpll A1<AxyA
17 simprl A1<Axyx
18 simprr A1<Axyy
19 simplr A1<Axy1<A
20 ltexp2a Axy1<Ax<yAx<Ay
21 20 expr Axy1<Ax<yAx<Ay
22 16 17 18 19 21 syl31anc A1<Axyx<yAx<Ay
23 1 2 3 4 15 22 eqord1 A1<AMNM=NAM=AN
24 23 ancom2s A1<ANMM=NAM=AN
25 24 exp43 A1<ANMM=NAM=AN
26 25 com24 AMN1<AM=NAM=AN
27 26 3imp1 AMN1<AM=NAM=AN
28 27 bicomd AMN1<AAM=ANM=N