Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
expcl
Next ⟩
rpexpcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
expcl
Description:
Closure law for nonnegative integer exponentiation.
(Contributed by
NM
, 26-May-2005)
Ref
Expression
Assertion
expcl
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
A
N
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
ℂ
⊆
ℂ
2
mulcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
⁢
y
∈
ℂ
3
ax-1cn
⊢
1
∈
ℂ
4
1
2
3
expcllem
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
A
N
∈
ℂ