| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expcllem.1 |
|
| 2 |
|
expcllem.2 |
|
| 3 |
|
expcllem.3 |
|
| 4 |
|
expcl2lem.4 |
|
| 5 |
|
elznn0nn |
|
| 6 |
1 2 3
|
expcllem |
|
| 7 |
6
|
ex |
|
| 8 |
7
|
adantr |
|
| 9 |
|
simpll |
|
| 10 |
1 9
|
sselid |
|
| 11 |
|
simprl |
|
| 12 |
11
|
recnd |
|
| 13 |
|
nnnn0 |
|
| 14 |
13
|
ad2antll |
|
| 15 |
|
expneg2 |
|
| 16 |
10 12 14 15
|
syl3anc |
|
| 17 |
|
difss |
|
| 18 |
|
simpl |
|
| 19 |
|
eldifsn |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
17 1
|
sstri |
|
| 22 |
17
|
sseli |
|
| 23 |
17
|
sseli |
|
| 24 |
22 23 2
|
syl2an |
|
| 25 |
|
eldifsn |
|
| 26 |
1
|
sseli |
|
| 27 |
26
|
anim1i |
|
| 28 |
25 27
|
sylbi |
|
| 29 |
|
eldifsn |
|
| 30 |
1
|
sseli |
|
| 31 |
30
|
anim1i |
|
| 32 |
29 31
|
sylbi |
|
| 33 |
|
mulne0 |
|
| 34 |
28 32 33
|
syl2an |
|
| 35 |
|
eldifsn |
|
| 36 |
24 34 35
|
sylanbrc |
|
| 37 |
|
ax-1ne0 |
|
| 38 |
|
eldifsn |
|
| 39 |
3 37 38
|
mpbir2an |
|
| 40 |
21 36 39
|
expcllem |
|
| 41 |
20 14 40
|
syl2anc |
|
| 42 |
17 41
|
sselid |
|
| 43 |
|
eldifsn |
|
| 44 |
41 43
|
sylib |
|
| 45 |
44
|
simprd |
|
| 46 |
|
neeq1 |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
eleq1d |
|
| 49 |
46 48
|
imbi12d |
|
| 50 |
4
|
ex |
|
| 51 |
49 50
|
vtoclga |
|
| 52 |
42 45 51
|
sylc |
|
| 53 |
16 52
|
eqeltrd |
|
| 54 |
53
|
ex |
|
| 55 |
8 54
|
jaod |
|
| 56 |
5 55
|
biimtrid |
|
| 57 |
56
|
3impia |
|