Metamath Proof Explorer


Theorem expcld

Description: Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
expcld.2 φ N 0
Assertion expcld φ A N

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 expcld.2 φ N 0
3 expcl A N 0 A N
4 1 2 3 syl2anc φ A N