Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
expclz
Next ⟩
zexpcld
Metamath Proof Explorer
Ascii
Unicode
Theorem
expclz
Description:
Closure law for integer exponentiation.
(Contributed by
Mario Carneiro
, 4-Jun-2014)
Ref
Expression
Assertion
expclz
⊢
A
∈
ℂ
∧
A
≠
0
∧
N
∈
ℤ
→
A
N
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
expclzlem
⊢
A
∈
ℂ
∧
A
≠
0
∧
N
∈
ℤ
→
A
N
∈
ℂ
∖
0
2
1
eldifad
⊢
A
∈
ℂ
∧
A
≠
0
∧
N
∈
ℤ
→
A
N
∈
ℂ