| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expcn.j |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
mpteq2dv |
|
| 4 |
3
|
eleq1d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
mpteq2dv |
|
| 7 |
6
|
eleq1d |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
mpteq2dv |
|
| 10 |
9
|
eleq1d |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
mpteq2dv |
|
| 13 |
12
|
eleq1d |
|
| 14 |
|
exp0 |
|
| 15 |
14
|
mpteq2ia |
|
| 16 |
1
|
cnfldtopon |
|
| 17 |
16
|
a1i |
|
| 18 |
|
1cnd |
|
| 19 |
17 17 18
|
cnmptc |
|
| 20 |
19
|
mptru |
|
| 21 |
15 20
|
eqeltri |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
cbvmptv |
|
| 24 |
|
id |
|
| 25 |
|
simpl |
|
| 26 |
|
expp1 |
|
| 27 |
|
expcl |
|
| 28 |
|
simpl |
|
| 29 |
|
ovmpot |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
26 30
|
eqtr4d |
|
| 32 |
24 25 31
|
syl2anr |
|
| 33 |
32
|
mpteq2dva |
|
| 34 |
23 33
|
eqtrid |
|
| 35 |
16
|
a1i |
|
| 36 |
|
oveq1 |
|
| 37 |
36
|
cbvmptv |
|
| 38 |
|
simpr |
|
| 39 |
37 38
|
eqeltrrid |
|
| 40 |
35
|
cnmptid |
|
| 41 |
1
|
mpomulcn |
|
| 42 |
41
|
a1i |
|
| 43 |
35 39 40 42
|
cnmpt12f |
|
| 44 |
34 43
|
eqeltrd |
|
| 45 |
44
|
ex |
|
| 46 |
4 7 10 13 21 45
|
nn0ind |
|