Step |
Hyp |
Ref |
Expression |
1 |
|
expcnfg.1 |
|
2 |
|
expcnfg.2 |
|
3 |
|
expcnfg.3 |
|
4 |
|
nfcv |
|
5 |
|
nfcv |
|
6 |
1 5
|
nffv |
|
7 |
|
nfcv |
|
8 |
|
nfcv |
|
9 |
6 7 8
|
nfov |
|
10 |
|
fveq2 |
|
11 |
10
|
oveq1d |
|
12 |
4 9 11
|
cbvmpt |
|
13 |
|
cncff |
|
14 |
2 13
|
syl |
|
15 |
14
|
ffvelrnda |
|
16 |
3
|
adantr |
|
17 |
15 16
|
expcld |
|
18 |
|
oveq1 |
|
19 |
|
eqid |
|
20 |
6 9 18 19
|
fvmptf |
|
21 |
15 17 20
|
syl2anc |
|
22 |
21
|
eqcomd |
|
23 |
22
|
mpteq2dva |
|
24 |
12 23
|
syl5eq |
|
25 |
|
simpr |
|
26 |
3
|
adantr |
|
27 |
25 26
|
expcld |
|
28 |
27
|
fmpttd |
|
29 |
|
fcompt |
|
30 |
28 14 29
|
syl2anc |
|
31 |
24 30
|
eqtr4d |
|
32 |
|
expcncf |
|
33 |
3 32
|
syl |
|
34 |
2 33
|
cncfco |
|
35 |
31 34
|
eqeltrd |
|