Metamath Proof Explorer


Theorem expcnfg

Description: If F is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses expcnfg.1 _ x F
expcnfg.2 φ F : A cn
expcnfg.3 φ N 0
Assertion expcnfg φ x A F x N : A cn

Proof

Step Hyp Ref Expression
1 expcnfg.1 _ x F
2 expcnfg.2 φ F : A cn
3 expcnfg.3 φ N 0
4 nfcv _ t F x N
5 nfcv _ x t
6 1 5 nffv _ x F t
7 nfcv _ x ^
8 nfcv _ x N
9 6 7 8 nfov _ x F t N
10 fveq2 x = t F x = F t
11 10 oveq1d x = t F x N = F t N
12 4 9 11 cbvmpt x A F x N = t A F t N
13 cncff F : A cn F : A
14 2 13 syl φ F : A
15 14 ffvelrnda φ t A F t
16 3 adantr φ t A N 0
17 15 16 expcld φ t A F t N
18 oveq1 x = F t x N = F t N
19 eqid x x N = x x N
20 6 9 18 19 fvmptf F t F t N x x N F t = F t N
21 15 17 20 syl2anc φ t A x x N F t = F t N
22 21 eqcomd φ t A F t N = x x N F t
23 22 mpteq2dva φ t A F t N = t A x x N F t
24 12 23 syl5eq φ x A F x N = t A x x N F t
25 simpr φ x x
26 3 adantr φ x N 0
27 25 26 expcld φ x x N
28 27 fmpttd φ x x N :
29 fcompt x x N : F : A x x N F = t A x x N F t
30 28 14 29 syl2anc φ x x N F = t A x x N F t
31 24 30 eqtr4d φ x A F x N = x x N F
32 expcncf N 0 x x N : cn
33 3 32 syl φ x x N : cn
34 2 33 cncfco φ x x N F : A cn
35 31 34 eqeltrd φ x A F x N : A cn