Step |
Hyp |
Ref |
Expression |
1 |
|
expcnv.1 |
|
2 |
|
expcnv.2 |
|
3 |
|
nnuz |
|
4 |
|
1zzd |
|
5 |
|
nn0ex |
|
6 |
5
|
mptex |
|
7 |
6
|
a1i |
|
8 |
|
0cnd |
|
9 |
|
nnnn0 |
|
10 |
|
oveq2 |
|
11 |
|
eqid |
|
12 |
|
ovex |
|
13 |
10 11 12
|
fvmpt |
|
14 |
9 13
|
syl |
|
15 |
|
simpr |
|
16 |
15
|
oveq1d |
|
17 |
14 16
|
sylan9eqr |
|
18 |
|
0exp |
|
19 |
18
|
adantl |
|
20 |
17 19
|
eqtrd |
|
21 |
3 4 7 8 20
|
climconst |
|
22 |
|
1zzd |
|
23 |
2
|
adantr |
|
24 |
|
absrpcl |
|
25 |
1 24
|
sylan |
|
26 |
25
|
reclt1d |
|
27 |
23 26
|
mpbid |
|
28 |
|
1re |
|
29 |
25
|
rpreccld |
|
30 |
29
|
rpred |
|
31 |
|
difrp |
|
32 |
28 30 31
|
sylancr |
|
33 |
27 32
|
mpbid |
|
34 |
33
|
rpreccld |
|
35 |
34
|
rpcnd |
|
36 |
|
divcnv |
|
37 |
35 36
|
syl |
|
38 |
|
nnex |
|
39 |
38
|
mptex |
|
40 |
39
|
a1i |
|
41 |
|
oveq2 |
|
42 |
|
eqid |
|
43 |
|
ovex |
|
44 |
41 42 43
|
fvmpt |
|
45 |
44
|
adantl |
|
46 |
34
|
rpred |
|
47 |
|
nndivre |
|
48 |
46 47
|
sylan |
|
49 |
45 48
|
eqeltrd |
|
50 |
|
oveq2 |
|
51 |
|
eqid |
|
52 |
|
ovex |
|
53 |
50 51 52
|
fvmpt |
|
54 |
53
|
adantl |
|
55 |
|
nnz |
|
56 |
|
rpexpcl |
|
57 |
25 55 56
|
syl2an |
|
58 |
54 57
|
eqeltrd |
|
59 |
58
|
rpred |
|
60 |
|
nnrp |
|
61 |
|
rpmulcl |
|
62 |
33 60 61
|
syl2an |
|
63 |
62
|
rpred |
|
64 |
|
peano2re |
|
65 |
63 64
|
syl |
|
66 |
|
rpexpcl |
|
67 |
29 55 66
|
syl2an |
|
68 |
67
|
rpred |
|
69 |
63
|
lep1d |
|
70 |
30
|
adantr |
|
71 |
9
|
adantl |
|
72 |
29
|
rpge0d |
|
73 |
72
|
adantr |
|
74 |
|
bernneq2 |
|
75 |
70 71 73 74
|
syl3anc |
|
76 |
63 65 68 69 75
|
letrd |
|
77 |
25
|
rpcnne0d |
|
78 |
|
exprec |
|
79 |
78
|
3expa |
|
80 |
77 55 79
|
syl2an |
|
81 |
76 80
|
breqtrd |
|
82 |
62 57 81
|
lerec2d |
|
83 |
33
|
rpcnne0d |
|
84 |
|
nncn |
|
85 |
|
nnne0 |
|
86 |
84 85
|
jca |
|
87 |
|
recdiv2 |
|
88 |
83 86 87
|
syl2an |
|
89 |
82 88
|
breqtrrd |
|
90 |
89 54 45
|
3brtr4d |
|
91 |
58
|
rpge0d |
|
92 |
3 22 37 40 49 59 90 91
|
climsqz2 |
|
93 |
|
1zzd |
|
94 |
6
|
a1i |
|
95 |
39
|
a1i |
|
96 |
9
|
adantl |
|
97 |
96 13
|
syl |
|
98 |
|
expcl |
|
99 |
1 9 98
|
syl2an |
|
100 |
97 99
|
eqeltrd |
|
101 |
|
absexp |
|
102 |
1 9 101
|
syl2an |
|
103 |
97
|
fveq2d |
|
104 |
53
|
adantl |
|
105 |
102 103 104
|
3eqtr4rd |
|
106 |
3 93 94 95 100 105
|
climabs0 |
|
107 |
106
|
biimpar |
|
108 |
92 107
|
syldan |
|
109 |
21 108
|
pm2.61dane |
|