Metamath Proof Explorer


Theorem expdivd

Description: Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φA
mulexpd.2 φB
sqdivd.3 φB0
expdivd.3 φN0
Assertion expdivd φABN=ANBN

Proof

Step Hyp Ref Expression
1 expcld.1 φA
2 mulexpd.2 φB
3 sqdivd.3 φB0
4 expdivd.3 φN0
5 expdiv ABB0N0ABN=ANBN
6 1 2 3 4 5 syl121anc φABN=ANBN