Metamath Proof Explorer


Theorem expdivd

Description: Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
mulexpd.2 φ B
sqdivd.3 φ B 0
expdivd.3 φ N 0
Assertion expdivd φ A B N = A N B N

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 mulexpd.2 φ B
3 sqdivd.3 φ B 0
4 expdivd.3 φ N 0
5 expdiv A B B 0 N 0 A B N = A N B N
6 1 2 3 4 5 syl121anc φ A B N = A N B N