Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
eqeq1d |
|
3 |
2
|
bibi1d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq2 |
|
6 |
5
|
eqeq1d |
|
7 |
6
|
bibi1d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
9
|
eqeq1d |
|
11 |
10
|
bibi1d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
eqeq1d |
|
15 |
14
|
bibi1d |
|
16 |
15
|
imbi2d |
|
17 |
|
exp1 |
|
18 |
17
|
eqeq1d |
|
19 |
|
nnnn0 |
|
20 |
|
expp1 |
|
21 |
20
|
eqeq1d |
|
22 |
|
expcl |
|
23 |
|
simpl |
|
24 |
22 23
|
mul0ord |
|
25 |
21 24
|
bitrd |
|
26 |
19 25
|
sylan2 |
|
27 |
|
biimp |
|
28 |
|
idd |
|
29 |
27 28
|
jaod |
|
30 |
|
olc |
|
31 |
29 30
|
impbid1 |
|
32 |
26 31
|
sylan9bb |
|
33 |
32
|
exp31 |
|
34 |
33
|
com12 |
|
35 |
34
|
a2d |
|
36 |
4 8 12 16 18 35
|
nnind |
|
37 |
36
|
impcom |
|