Metamath Proof Explorer


Theorem expfac

Description: Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis expfac.f F = n 0 A n n !
Assertion expfac A F 0

Proof

Step Hyp Ref Expression
1 expfac.f F = n 0 A n n !
2 nn0uz 0 = 0
3 0zd A 0
4 nn0ex 0 V
5 4 mptex n 0 A n n ! V
6 1 5 eqeltri F V
7 6 a1i A F V
8 1 efcllem A seq 0 + F dom
9 oveq2 n = m A n = A m
10 fveq2 n = m n ! = m !
11 9 10 oveq12d n = m A n n ! = A m m !
12 simpr A m 0 m 0
13 eftcl A m 0 A m m !
14 1 11 12 13 fvmptd3 A m 0 F m = A m m !
15 14 13 eqeltrd A m 0 F m
16 2 3 7 8 15 serf0 A F 0