Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
expfac
Next ⟩
climconstmpt
Metamath Proof Explorer
Ascii
Unicode
Theorem
expfac
Description:
Factorial grows faster than exponential.
(Contributed by
Glauco Siliprandi
, 5-Apr-2020)
Ref
Expression
Hypothesis
expfac.f
⊢
F
=
n
∈
ℕ
0
⟼
A
n
n
!
Assertion
expfac
⊢
A
∈
ℂ
→
F
⇝
0
Proof
Step
Hyp
Ref
Expression
1
expfac.f
⊢
F
=
n
∈
ℕ
0
⟼
A
n
n
!
2
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
3
0zd
⊢
A
∈
ℂ
→
0
∈
ℤ
4
nn0ex
⊢
ℕ
0
∈
V
5
4
mptex
⊢
n
∈
ℕ
0
⟼
A
n
n
!
∈
V
6
1
5
eqeltri
⊢
F
∈
V
7
6
a1i
⊢
A
∈
ℂ
→
F
∈
V
8
1
efcllem
⊢
A
∈
ℂ
→
seq
0
+
F
∈
dom
⁡
⇝
9
oveq2
⊢
n
=
m
→
A
n
=
A
m
10
fveq2
⊢
n
=
m
→
n
!
=
m
!
11
9
10
oveq12d
⊢
n
=
m
→
A
n
n
!
=
A
m
m
!
12
simpr
⊢
A
∈
ℂ
∧
m
∈
ℕ
0
→
m
∈
ℕ
0
13
eftcl
⊢
A
∈
ℂ
∧
m
∈
ℕ
0
→
A
m
m
!
∈
ℂ
14
1
11
12
13
fvmptd3
⊢
A
∈
ℂ
∧
m
∈
ℕ
0
→
F
⁡
m
=
A
m
m
!
15
14
13
eqeltrd
⊢
A
∈
ℂ
∧
m
∈
ℕ
0
→
F
⁡
m
∈
ℂ
16
2
3
7
8
15
serf0
⊢
A
∈
ℂ
→
F
⇝
0