Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
expge1d
Metamath Proof Explorer
Description: A real greater than or equal to 1 raised to a nonnegative integer is
greater than or equal to 1. (Contributed by Mario Carneiro , 28-May-2016)
Ref
Expression
Hypotheses
reexpcld.1
⊢ φ → A ∈ ℝ
reexpcld.2
⊢ φ → N ∈ ℕ 0
expge1d.3
⊢ φ → 1 ≤ A
Assertion
expge1d
⊢ φ → 1 ≤ A N
Proof
Step
Hyp
Ref
Expression
1
reexpcld.1
⊢ φ → A ∈ ℝ
2
reexpcld.2
⊢ φ → N ∈ ℕ 0
3
expge1d.3
⊢ φ → 1 ≤ A
4
expge1
⊢ A ∈ ℝ ∧ N ∈ ℕ 0 ∧ 1 ≤ A → 1 ≤ A N
5
1 2 3 4
syl3anc
⊢ φ → 1 ≤ A N