Metamath Proof Explorer


Theorem expi

Description: An exportation inference. (Contributed by NM, 29-Dec-1992) (Proof shortened by Mel L. O'Cat, 28-Nov-2008)

Ref Expression
Hypothesis expi.1 ¬ φ ¬ ψ χ
Assertion expi φ ψ χ

Proof

Step Hyp Ref Expression
1 expi.1 ¬ φ ¬ ψ χ
2 pm3.2im φ ψ ¬ φ ¬ ψ
3 2 1 syl6 φ ψ χ