Step |
Hyp |
Ref |
Expression |
1 |
|
explecnv.1 |
|
2 |
|
explecnv.2 |
|
3 |
|
explecnv.3 |
|
4 |
|
explecnv.5 |
|
5 |
|
explecnv.4 |
|
6 |
|
explecnv.6 |
|
7 |
|
explecnv.7 |
|
8 |
|
eqid |
|
9 |
|
0z |
|
10 |
|
ifcl |
|
11 |
9 3 10
|
sylancr |
|
12 |
4
|
recnd |
|
13 |
12 5
|
expcnv |
|
14 |
1
|
fvexi |
|
15 |
14
|
mptex |
|
16 |
15
|
a1i |
|
17 |
|
nn0uz |
|
18 |
1 17
|
ineq12i |
|
19 |
|
uzin |
|
20 |
3 9 19
|
sylancl |
|
21 |
18 20
|
eqtr2id |
|
22 |
21
|
eleq2d |
|
23 |
22
|
biimpa |
|
24 |
23
|
elin2d |
|
25 |
|
oveq2 |
|
26 |
|
eqid |
|
27 |
|
ovex |
|
28 |
25 26 27
|
fvmpt |
|
29 |
24 28
|
syl |
|
30 |
4
|
adantr |
|
31 |
30 24
|
reexpcld |
|
32 |
29 31
|
eqeltrd |
|
33 |
23
|
elin1d |
|
34 |
|
2fveq3 |
|
35 |
|
eqid |
|
36 |
|
fvex |
|
37 |
34 35 36
|
fvmpt |
|
38 |
33 37
|
syl |
|
39 |
33 6
|
syldan |
|
40 |
39
|
abscld |
|
41 |
38 40
|
eqeltrd |
|
42 |
33 7
|
syldan |
|
43 |
42 38 29
|
3brtr4d |
|
44 |
39
|
absge0d |
|
45 |
44 38
|
breqtrrd |
|
46 |
8 11 13 16 32 41 43 45
|
climsqz2 |
|
47 |
37
|
adantl |
|
48 |
1 3 2 16 6 47
|
climabs0 |
|
49 |
46 48
|
mpbird |
|