Metamath Proof Explorer


Theorem expm1d

Description: Value of a complex number raised to an integer power minus one. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
sqrecd.1 φ A 0
expclzd.3 φ N
Assertion expm1d φ A N 1 = A N A

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 sqrecd.1 φ A 0
3 expclzd.3 φ N
4 expm1 A A 0 N A N 1 = A N A
5 1 2 3 4 syl3anc φ A N 1 = A N A