Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
expm1t
Next ⟩
1exp
Metamath Proof Explorer
Ascii
Unicode
Theorem
expm1t
Description:
Exponentiation in terms of predecessor exponent.
(Contributed by
NM
, 19-Dec-2005)
Ref
Expression
Assertion
expm1t
⊢
A
∈
ℂ
∧
N
∈
ℕ
→
A
N
=
A
N
−
1
⁢
A
Proof
Step
Hyp
Ref
Expression
1
nncn
⊢
N
∈
ℕ
→
N
∈
ℂ
2
ax-1cn
⊢
1
∈
ℂ
3
npcan
⊢
N
∈
ℂ
∧
1
∈
ℂ
→
N
-
1
+
1
=
N
4
1
2
3
sylancl
⊢
N
∈
ℕ
→
N
-
1
+
1
=
N
5
4
oveq2d
⊢
N
∈
ℕ
→
A
N
-
1
+
1
=
A
N
6
5
adantl
⊢
A
∈
ℂ
∧
N
∈
ℕ
→
A
N
-
1
+
1
=
A
N
7
nnm1nn0
⊢
N
∈
ℕ
→
N
−
1
∈
ℕ
0
8
expp1
⊢
A
∈
ℂ
∧
N
−
1
∈
ℕ
0
→
A
N
-
1
+
1
=
A
N
−
1
⁢
A
9
7
8
sylan2
⊢
A
∈
ℂ
∧
N
∈
ℕ
→
A
N
-
1
+
1
=
A
N
−
1
⁢
A
10
6
9
eqtr3d
⊢
A
∈
ℂ
∧
N
∈
ℕ
→
A
N
=
A
N
−
1
⁢
A