Metamath Proof Explorer


Theorem expm1t

Description: Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005)

Ref Expression
Assertion expm1t A N A N = A N 1 A

Proof

Step Hyp Ref Expression
1 nncn N N
2 ax-1cn 1
3 npcan N 1 N - 1 + 1 = N
4 1 2 3 sylancl N N - 1 + 1 = N
5 4 oveq2d N A N - 1 + 1 = A N
6 5 adantl A N A N - 1 + 1 = A N
7 nnm1nn0 N N 1 0
8 expp1 A N 1 0 A N - 1 + 1 = A N 1 A
9 7 8 sylan2 A N A N - 1 + 1 = A N 1 A
10 6 9 eqtr3d A N A N = A N 1 A