Metamath Proof Explorer


Theorem expmhm

Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses expmhm.1 N = fld 𝑠 0
expmhm.2 M = mulGrp fld
Assertion expmhm A x 0 A x N MndHom M

Proof

Step Hyp Ref Expression
1 expmhm.1 N = fld 𝑠 0
2 expmhm.2 M = mulGrp fld
3 expcl A x 0 A x
4 3 fmpttd A x 0 A x : 0
5 expadd A y 0 z 0 A y + z = A y A z
6 5 3expb A y 0 z 0 A y + z = A y A z
7 nn0addcl y 0 z 0 y + z 0
8 7 adantl A y 0 z 0 y + z 0
9 oveq2 x = y + z A x = A y + z
10 eqid x 0 A x = x 0 A x
11 ovex A y + z V
12 9 10 11 fvmpt y + z 0 x 0 A x y + z = A y + z
13 8 12 syl A y 0 z 0 x 0 A x y + z = A y + z
14 oveq2 x = y A x = A y
15 ovex A y V
16 14 10 15 fvmpt y 0 x 0 A x y = A y
17 oveq2 x = z A x = A z
18 ovex A z V
19 17 10 18 fvmpt z 0 x 0 A x z = A z
20 16 19 oveqan12d y 0 z 0 x 0 A x y x 0 A x z = A y A z
21 20 adantl A y 0 z 0 x 0 A x y x 0 A x z = A y A z
22 6 13 21 3eqtr4d A y 0 z 0 x 0 A x y + z = x 0 A x y x 0 A x z
23 22 ralrimivva A y 0 z 0 x 0 A x y + z = x 0 A x y x 0 A x z
24 0nn0 0 0
25 oveq2 x = 0 A x = A 0
26 ovex A 0 V
27 25 10 26 fvmpt 0 0 x 0 A x 0 = A 0
28 24 27 ax-mp x 0 A x 0 = A 0
29 exp0 A A 0 = 1
30 28 29 eqtrid A x 0 A x 0 = 1
31 nn0subm 0 SubMnd fld
32 1 submmnd 0 SubMnd fld N Mnd
33 31 32 ax-mp N Mnd
34 cnring fld Ring
35 2 ringmgp fld Ring M Mnd
36 34 35 ax-mp M Mnd
37 33 36 pm3.2i N Mnd M Mnd
38 1 submbas 0 SubMnd fld 0 = Base N
39 31 38 ax-mp 0 = Base N
40 cnfldbas = Base fld
41 2 40 mgpbas = Base M
42 cnfldadd + = + fld
43 1 42 ressplusg 0 SubMnd fld + = + N
44 31 43 ax-mp + = + N
45 cnfldmul × = fld
46 2 45 mgpplusg × = + M
47 cnfld0 0 = 0 fld
48 1 47 subm0 0 SubMnd fld 0 = 0 N
49 31 48 ax-mp 0 = 0 N
50 cnfld1 1 = 1 fld
51 2 50 ringidval 1 = 0 M
52 39 41 44 46 49 51 ismhm x 0 A x N MndHom M N Mnd M Mnd x 0 A x : 0 y 0 z 0 x 0 A x y + z = x 0 A x y x 0 A x z x 0 A x 0 = 1
53 37 52 mpbiran x 0 A x N MndHom M x 0 A x : 0 y 0 z 0 x 0 A x y + z = x 0 A x y x 0 A x z x 0 A x 0 = 1
54 4 23 30 53 syl3anbrc A x 0 A x N MndHom M