Description: Base ordering relationship for exponentiation of nonnegative reals to a fixed positive integer power. (Contributed by Stefan O'Rear, 16-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | expmordi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | oveq2 | |
|
3 | 1 2 | breq12d | |
4 | 3 | imbi2d | |
5 | oveq2 | |
|
6 | oveq2 | |
|
7 | 5 6 | breq12d | |
8 | 7 | imbi2d | |
9 | oveq2 | |
|
10 | oveq2 | |
|
11 | 9 10 | breq12d | |
12 | 11 | imbi2d | |
13 | oveq2 | |
|
14 | oveq2 | |
|
15 | 13 14 | breq12d | |
16 | 15 | imbi2d | |
17 | recn | |
|
18 | recn | |
|
19 | exp1 | |
|
20 | exp1 | |
|
21 | 19 20 | breqan12d | |
22 | 17 18 21 | syl2an | |
23 | 22 | biimpar | |
24 | 23 | adantrl | |
25 | simp2ll | |
|
26 | nnnn0 | |
|
27 | 26 | 3ad2ant1 | |
28 | 25 27 | reexpcld | |
29 | simp2lr | |
|
30 | 29 27 | reexpcld | |
31 | 28 30 | jca | |
32 | simp2rl | |
|
33 | 25 27 32 | expge0d | |
34 | simp3 | |
|
35 | 33 34 | jca | |
36 | simp2l | |
|
37 | simp2r | |
|
38 | ltmul12a | |
|
39 | 31 35 36 37 38 | syl22anc | |
40 | 25 | recnd | |
41 | 40 27 | expp1d | |
42 | 29 | recnd | |
43 | 42 27 | expp1d | |
44 | 39 41 43 | 3brtr4d | |
45 | 44 | 3exp | |
46 | 45 | a2d | |
47 | 4 8 12 16 24 46 | nnind | |
48 | 47 | impcom | |
49 | 48 | 3impa | |