Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
breq12d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq2 |
|
6 |
|
oveq2 |
|
7 |
5 6
|
breq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
|
oveq2 |
|
11 |
9 10
|
breq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
|
oveq2 |
|
15 |
13 14
|
breq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
recn |
|
18 |
|
recn |
|
19 |
|
exp1 |
|
20 |
|
exp1 |
|
21 |
19 20
|
breqan12d |
|
22 |
17 18 21
|
syl2an |
|
23 |
22
|
biimpar |
|
24 |
23
|
adantrl |
|
25 |
|
simp2ll |
|
26 |
|
nnnn0 |
|
27 |
26
|
3ad2ant1 |
|
28 |
25 27
|
reexpcld |
|
29 |
|
simp2lr |
|
30 |
29 27
|
reexpcld |
|
31 |
28 30
|
jca |
|
32 |
|
simp2rl |
|
33 |
25 27 32
|
expge0d |
|
34 |
|
simp3 |
|
35 |
33 34
|
jca |
|
36 |
|
simp2l |
|
37 |
|
simp2r |
|
38 |
|
ltmul12a |
|
39 |
31 35 36 37 38
|
syl22anc |
|
40 |
25
|
recnd |
|
41 |
40 27
|
expp1d |
|
42 |
29
|
recnd |
|
43 |
42 27
|
expp1d |
|
44 |
39 41 43
|
3brtr4d |
|
45 |
44
|
3exp |
|
46 |
45
|
a2d |
|
47 |
4 8 12 16 24 46
|
nnind |
|
48 |
47
|
impcom |
|
49 |
48
|
3impa |
|