Metamath Proof Explorer


Theorem expmordi

Description: Base ordering relationship for exponentiation. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion expmordi A B 0 A A < B N A N < B N

Proof

Step Hyp Ref Expression
1 oveq2 a = 1 A a = A 1
2 oveq2 a = 1 B a = B 1
3 1 2 breq12d a = 1 A a < B a A 1 < B 1
4 3 imbi2d a = 1 A B 0 A A < B A a < B a A B 0 A A < B A 1 < B 1
5 oveq2 a = b A a = A b
6 oveq2 a = b B a = B b
7 5 6 breq12d a = b A a < B a A b < B b
8 7 imbi2d a = b A B 0 A A < B A a < B a A B 0 A A < B A b < B b
9 oveq2 a = b + 1 A a = A b + 1
10 oveq2 a = b + 1 B a = B b + 1
11 9 10 breq12d a = b + 1 A a < B a A b + 1 < B b + 1
12 11 imbi2d a = b + 1 A B 0 A A < B A a < B a A B 0 A A < B A b + 1 < B b + 1
13 oveq2 a = N A a = A N
14 oveq2 a = N B a = B N
15 13 14 breq12d a = N A a < B a A N < B N
16 15 imbi2d a = N A B 0 A A < B A a < B a A B 0 A A < B A N < B N
17 recn A A
18 recn B B
19 exp1 A A 1 = A
20 exp1 B B 1 = B
21 19 20 breqan12d A B A 1 < B 1 A < B
22 17 18 21 syl2an A B A 1 < B 1 A < B
23 22 biimpar A B A < B A 1 < B 1
24 23 adantrl A B 0 A A < B A 1 < B 1
25 simp2ll b A B 0 A A < B A b < B b A
26 nnnn0 b b 0
27 26 3ad2ant1 b A B 0 A A < B A b < B b b 0
28 25 27 reexpcld b A B 0 A A < B A b < B b A b
29 simp2lr b A B 0 A A < B A b < B b B
30 29 27 reexpcld b A B 0 A A < B A b < B b B b
31 28 30 jca b A B 0 A A < B A b < B b A b B b
32 simp2rl b A B 0 A A < B A b < B b 0 A
33 25 27 32 expge0d b A B 0 A A < B A b < B b 0 A b
34 simp3 b A B 0 A A < B A b < B b A b < B b
35 33 34 jca b A B 0 A A < B A b < B b 0 A b A b < B b
36 simp2l b A B 0 A A < B A b < B b A B
37 simp2r b A B 0 A A < B A b < B b 0 A A < B
38 ltmul12a A b B b 0 A b A b < B b A B 0 A A < B A b A < B b B
39 31 35 36 37 38 syl22anc b A B 0 A A < B A b < B b A b A < B b B
40 25 recnd b A B 0 A A < B A b < B b A
41 40 27 expp1d b A B 0 A A < B A b < B b A b + 1 = A b A
42 29 recnd b A B 0 A A < B A b < B b B
43 42 27 expp1d b A B 0 A A < B A b < B b B b + 1 = B b B
44 39 41 43 3brtr4d b A B 0 A A < B A b < B b A b + 1 < B b + 1
45 44 3exp b A B 0 A A < B A b < B b A b + 1 < B b + 1
46 45 a2d b A B 0 A A < B A b < B b A B 0 A A < B A b + 1 < B b + 1
47 4 8 12 16 24 46 nnind N A B 0 A A < B A N < B N
48 47 impcom A B 0 A A < B N A N < B N
49 48 3impa A B 0 A A < B N A N < B N