Metamath Proof Explorer


Theorem expmordi

Description: Base ordering relationship for exponentiation of nonnegative reals to a fixed positive integer power. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion expmordi AB0AA<BNAN<BN

Proof

Step Hyp Ref Expression
1 oveq2 a=1Aa=A1
2 oveq2 a=1Ba=B1
3 1 2 breq12d a=1Aa<BaA1<B1
4 3 imbi2d a=1AB0AA<BAa<BaAB0AA<BA1<B1
5 oveq2 a=bAa=Ab
6 oveq2 a=bBa=Bb
7 5 6 breq12d a=bAa<BaAb<Bb
8 7 imbi2d a=bAB0AA<BAa<BaAB0AA<BAb<Bb
9 oveq2 a=b+1Aa=Ab+1
10 oveq2 a=b+1Ba=Bb+1
11 9 10 breq12d a=b+1Aa<BaAb+1<Bb+1
12 11 imbi2d a=b+1AB0AA<BAa<BaAB0AA<BAb+1<Bb+1
13 oveq2 a=NAa=AN
14 oveq2 a=NBa=BN
15 13 14 breq12d a=NAa<BaAN<BN
16 15 imbi2d a=NAB0AA<BAa<BaAB0AA<BAN<BN
17 recn AA
18 recn BB
19 exp1 AA1=A
20 exp1 BB1=B
21 19 20 breqan12d ABA1<B1A<B
22 17 18 21 syl2an ABA1<B1A<B
23 22 biimpar ABA<BA1<B1
24 23 adantrl AB0AA<BA1<B1
25 simp2ll bAB0AA<BAb<BbA
26 nnnn0 bb0
27 26 3ad2ant1 bAB0AA<BAb<Bbb0
28 25 27 reexpcld bAB0AA<BAb<BbAb
29 simp2lr bAB0AA<BAb<BbB
30 29 27 reexpcld bAB0AA<BAb<BbBb
31 28 30 jca bAB0AA<BAb<BbAbBb
32 simp2rl bAB0AA<BAb<Bb0A
33 25 27 32 expge0d bAB0AA<BAb<Bb0Ab
34 simp3 bAB0AA<BAb<BbAb<Bb
35 33 34 jca bAB0AA<BAb<Bb0AbAb<Bb
36 simp2l bAB0AA<BAb<BbAB
37 simp2r bAB0AA<BAb<Bb0AA<B
38 ltmul12a AbBb0AbAb<BbAB0AA<BAbA<BbB
39 31 35 36 37 38 syl22anc bAB0AA<BAb<BbAbA<BbB
40 25 recnd bAB0AA<BAb<BbA
41 40 27 expp1d bAB0AA<BAb<BbAb+1=AbA
42 29 recnd bAB0AA<BAb<BbB
43 42 27 expp1d bAB0AA<BAb<BbBb+1=BbB
44 39 41 43 3brtr4d bAB0AA<BAb<BbAb+1<Bb+1
45 44 3exp bAB0AA<BAb<BbAb+1<Bb+1
46 45 a2d bAB0AA<BAb<BbAB0AA<BAb+1<Bb+1
47 4 8 12 16 24 46 nnind NAB0AA<BAN<BN
48 47 impcom AB0AA<BNAN<BN
49 48 3impa AB0AA<BNAN<BN