Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq2d |
|
3 |
|
oveq2 |
|
4 |
2 3
|
eqeq12d |
|
5 |
4
|
imbi2d |
|
6 |
|
oveq2 |
|
7 |
6
|
oveq2d |
|
8 |
|
oveq2 |
|
9 |
7 8
|
eqeq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
oveq2 |
|
12 |
11
|
oveq2d |
|
13 |
|
oveq2 |
|
14 |
12 13
|
eqeq12d |
|
15 |
14
|
imbi2d |
|
16 |
|
oveq2 |
|
17 |
16
|
oveq2d |
|
18 |
|
oveq2 |
|
19 |
17 18
|
eqeq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
nn0cn |
|
22 |
21
|
mul01d |
|
23 |
22
|
oveq2d |
|
24 |
|
exp0 |
|
25 |
23 24
|
sylan9eqr |
|
26 |
|
expcl |
|
27 |
|
exp0 |
|
28 |
26 27
|
syl |
|
29 |
25 28
|
eqtr4d |
|
30 |
|
oveq1 |
|
31 |
|
nn0cn |
|
32 |
|
ax-1cn |
|
33 |
|
adddi |
|
34 |
32 33
|
mp3an3 |
|
35 |
|
mulid1 |
|
36 |
35
|
adantr |
|
37 |
36
|
oveq2d |
|
38 |
34 37
|
eqtrd |
|
39 |
21 31 38
|
syl2an |
|
40 |
39
|
adantll |
|
41 |
40
|
oveq2d |
|
42 |
|
simpll |
|
43 |
|
nn0mulcl |
|
44 |
43
|
adantll |
|
45 |
|
simplr |
|
46 |
|
expadd |
|
47 |
42 44 45 46
|
syl3anc |
|
48 |
41 47
|
eqtrd |
|
49 |
|
expp1 |
|
50 |
26 49
|
sylan |
|
51 |
48 50
|
eqeq12d |
|
52 |
30 51
|
syl5ibr |
|
53 |
52
|
expcom |
|
54 |
53
|
a2d |
|
55 |
5 10 15 20 29 54
|
nn0ind |
|
56 |
55
|
expdcom |
|
57 |
56
|
3imp |
|