Metamath Proof Explorer


Theorem expmul

Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006)

Ref Expression
Assertion expmul A M 0 N 0 A M N = A M N

Proof

Step Hyp Ref Expression
1 oveq2 j = 0 M j = M 0
2 1 oveq2d j = 0 A M j = A M 0
3 oveq2 j = 0 A M j = A M 0
4 2 3 eqeq12d j = 0 A M j = A M j A M 0 = A M 0
5 4 imbi2d j = 0 A M 0 A M j = A M j A M 0 A M 0 = A M 0
6 oveq2 j = k M j = M k
7 6 oveq2d j = k A M j = A M k
8 oveq2 j = k A M j = A M k
9 7 8 eqeq12d j = k A M j = A M j A M k = A M k
10 9 imbi2d j = k A M 0 A M j = A M j A M 0 A M k = A M k
11 oveq2 j = k + 1 M j = M k + 1
12 11 oveq2d j = k + 1 A M j = A M k + 1
13 oveq2 j = k + 1 A M j = A M k + 1
14 12 13 eqeq12d j = k + 1 A M j = A M j A M k + 1 = A M k + 1
15 14 imbi2d j = k + 1 A M 0 A M j = A M j A M 0 A M k + 1 = A M k + 1
16 oveq2 j = N M j = M N
17 16 oveq2d j = N A M j = A M N
18 oveq2 j = N A M j = A M N
19 17 18 eqeq12d j = N A M j = A M j A M N = A M N
20 19 imbi2d j = N A M 0 A M j = A M j A M 0 A M N = A M N
21 nn0cn M 0 M
22 21 mul01d M 0 M 0 = 0
23 22 oveq2d M 0 A M 0 = A 0
24 exp0 A A 0 = 1
25 23 24 sylan9eqr A M 0 A M 0 = 1
26 expcl A M 0 A M
27 exp0 A M A M 0 = 1
28 26 27 syl A M 0 A M 0 = 1
29 25 28 eqtr4d A M 0 A M 0 = A M 0
30 oveq1 A M k = A M k A M k A M = A M k A M
31 nn0cn k 0 k
32 ax-1cn 1
33 adddi M k 1 M k + 1 = M k + M 1
34 32 33 mp3an3 M k M k + 1 = M k + M 1
35 mulid1 M M 1 = M
36 35 adantr M k M 1 = M
37 36 oveq2d M k M k + M 1 = M k + M
38 34 37 eqtrd M k M k + 1 = M k + M
39 21 31 38 syl2an M 0 k 0 M k + 1 = M k + M
40 39 adantll A M 0 k 0 M k + 1 = M k + M
41 40 oveq2d A M 0 k 0 A M k + 1 = A M k + M
42 simpll A M 0 k 0 A
43 nn0mulcl M 0 k 0 M k 0
44 43 adantll A M 0 k 0 M k 0
45 simplr A M 0 k 0 M 0
46 expadd A M k 0 M 0 A M k + M = A M k A M
47 42 44 45 46 syl3anc A M 0 k 0 A M k + M = A M k A M
48 41 47 eqtrd A M 0 k 0 A M k + 1 = A M k A M
49 expp1 A M k 0 A M k + 1 = A M k A M
50 26 49 sylan A M 0 k 0 A M k + 1 = A M k A M
51 48 50 eqeq12d A M 0 k 0 A M k + 1 = A M k + 1 A M k A M = A M k A M
52 30 51 syl5ibr A M 0 k 0 A M k = A M k A M k + 1 = A M k + 1
53 52 expcom k 0 A M 0 A M k = A M k A M k + 1 = A M k + 1
54 53 a2d k 0 A M 0 A M k = A M k A M 0 A M k + 1 = A M k + 1
55 5 10 15 20 29 54 nn0ind N 0 A M 0 A M N = A M N
56 55 expdcom A M 0 N 0 A M N = A M N
57 56 3imp A M 0 N 0 A M N = A M N