Metamath Proof Explorer


Theorem expmuld

Description: Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
expcld.2 φ N 0
expaddd.2 φ M 0
Assertion expmuld φ A M N = A M N

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 expcld.2 φ N 0
3 expaddd.2 φ M 0
4 expmul A M 0 N 0 A M N = A M N
5 1 3 2 4 syl3anc φ A M N = A M N