Metamath Proof Explorer


Theorem expmulz

Description: Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Assertion expmulz A A 0 M N A M N = A M N

Proof

Step Hyp Ref Expression
1 elznn0nn N N 0 N N
2 elznn0nn M M 0 M M
3 expmul A M 0 N 0 A M N = A M N
4 3 3expia A M 0 N 0 A M N = A M N
5 4 adantlr A A 0 M 0 N 0 A M N = A M N
6 simp2l A A 0 M M N 0 M
7 6 recnd A A 0 M M N 0 M
8 simp3 A A 0 M M N 0 N 0
9 8 nn0cnd A A 0 M M N 0 N
10 7 9 mulneg1d A A 0 M M N 0 -M N = M N
11 10 oveq2d A A 0 M M N 0 A -M N = A M N
12 simp1l A A 0 M M N 0 A
13 simp2r A A 0 M M N 0 M
14 13 nnnn0d A A 0 M M N 0 M 0
15 expmul A M 0 N 0 A -M N = A M N
16 12 14 8 15 syl3anc A A 0 M M N 0 A -M N = A M N
17 11 16 eqtr3d A A 0 M M N 0 A M N = A M N
18 17 oveq2d A A 0 M M N 0 1 A M N = 1 A M N
19 expcl A M 0 A M
20 12 14 19 syl2anc A A 0 M M N 0 A M
21 simp1r A A 0 M M N 0 A 0
22 13 nnzd A A 0 M M N 0 M
23 expne0i A A 0 M A M 0
24 12 21 22 23 syl3anc A A 0 M M N 0 A M 0
25 8 nn0zd A A 0 M M N 0 N
26 exprec A M A M 0 N 1 A M N = 1 A M N
27 20 24 25 26 syl3anc A A 0 M M N 0 1 A M N = 1 A M N
28 18 27 eqtr4d A A 0 M M N 0 1 A M N = 1 A M N
29 7 9 mulcld A A 0 M M N 0 M N
30 14 8 nn0mulcld A A 0 M M N 0 -M N 0
31 10 30 eqeltrrd A A 0 M M N 0 M N 0
32 expneg2 A M N M N 0 A M N = 1 A M N
33 12 29 31 32 syl3anc A A 0 M M N 0 A M N = 1 A M N
34 expneg2 A M M 0 A M = 1 A M
35 12 7 14 34 syl3anc A A 0 M M N 0 A M = 1 A M
36 35 oveq1d A A 0 M M N 0 A M N = 1 A M N
37 28 33 36 3eqtr4d A A 0 M M N 0 A M N = A M N
38 37 3expia A A 0 M M N 0 A M N = A M N
39 5 38 jaodan A A 0 M 0 M M N 0 A M N = A M N
40 simp2 A A 0 M 0 N N M 0
41 40 nn0cnd A A 0 M 0 N N M
42 simp3l A A 0 M 0 N N N
43 42 recnd A A 0 M 0 N N N
44 41 43 mulneg2d A A 0 M 0 N N M -N = M N
45 44 oveq2d A A 0 M 0 N N A M -N = A M N
46 simp1l A A 0 M 0 N N A
47 simp3r A A 0 M 0 N N N
48 47 nnnn0d A A 0 M 0 N N N 0
49 expmul A M 0 N 0 A M -N = A M N
50 46 40 48 49 syl3anc A A 0 M 0 N N A M -N = A M N
51 45 50 eqtr3d A A 0 M 0 N N A M N = A M N
52 51 oveq2d A A 0 M 0 N N 1 A M N = 1 A M N
53 41 43 mulcld A A 0 M 0 N N M N
54 40 48 nn0mulcld A A 0 M 0 N N M -N 0
55 44 54 eqeltrrd A A 0 M 0 N N M N 0
56 46 53 55 32 syl3anc A A 0 M 0 N N A M N = 1 A M N
57 expcl A M 0 A M
58 46 40 57 syl2anc A A 0 M 0 N N A M
59 expneg2 A M N N 0 A M N = 1 A M N
60 58 43 48 59 syl3anc A A 0 M 0 N N A M N = 1 A M N
61 52 56 60 3eqtr4d A A 0 M 0 N N A M N = A M N
62 61 3expia A A 0 M 0 N N A M N = A M N
63 simp1l A A 0 M M N N A
64 simp2l A A 0 M M N N M
65 64 recnd A A 0 M M N N M
66 simp2r A A 0 M M N N M
67 66 nnnn0d A A 0 M M N N M 0
68 63 65 67 34 syl3anc A A 0 M M N N A M = 1 A M
69 68 oveq1d A A 0 M M N N A M N = 1 A M N
70 63 67 19 syl2anc A A 0 M M N N A M
71 simp1r A A 0 M M N N A 0
72 66 nnzd A A 0 M M N N M
73 63 71 72 23 syl3anc A A 0 M M N N A M 0
74 70 73 reccld A A 0 M M N N 1 A M
75 simp3l A A 0 M M N N N
76 75 recnd A A 0 M M N N N
77 simp3r A A 0 M M N N N
78 77 nnnn0d A A 0 M M N N N 0
79 expneg2 1 A M N N 0 1 A M N = 1 1 A M N
80 74 76 78 79 syl3anc A A 0 M M N N 1 A M N = 1 1 A M N
81 77 nnzd A A 0 M M N N N
82 exprec A M A M 0 N 1 A M N = 1 A M N
83 70 73 81 82 syl3anc A A 0 M M N N 1 A M N = 1 A M N
84 83 oveq2d A A 0 M M N N 1 1 A M N = 1 1 A M N
85 expcl A M N 0 A M N
86 70 78 85 syl2anc A A 0 M M N N A M N
87 expne0i A M A M 0 N A M N 0
88 70 73 81 87 syl3anc A A 0 M M N N A M N 0
89 86 88 recrecd A A 0 M M N N 1 1 A M N = A M N
90 expmul A M 0 N 0 A -M -N = A M N
91 63 67 78 90 syl3anc A A 0 M M N N A -M -N = A M N
92 65 76 mul2negd A A 0 M M N N -M -N = M N
93 92 oveq2d A A 0 M M N N A -M -N = A M N
94 91 93 eqtr3d A A 0 M M N N A M N = A M N
95 84 89 94 3eqtrd A A 0 M M N N 1 1 A M N = A M N
96 69 80 95 3eqtrrd A A 0 M M N N A M N = A M N
97 96 3expia A A 0 M M N N A M N = A M N
98 62 97 jaodan A A 0 M 0 M M N N A M N = A M N
99 39 98 jaod A A 0 M 0 M M N 0 N N A M N = A M N
100 2 99 sylan2b A A 0 M N 0 N N A M N = A M N
101 1 100 syl5bi A A 0 M N A M N = A M N
102 101 impr A A 0 M N A M N = A M N