| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|
| 2 |
|
elznn0nn |
|
| 3 |
|
expmul |
|
| 4 |
3
|
3expia |
|
| 5 |
4
|
adantlr |
|
| 6 |
|
simp2l |
|
| 7 |
6
|
recnd |
|
| 8 |
|
simp3 |
|
| 9 |
8
|
nn0cnd |
|
| 10 |
7 9
|
mulneg1d |
|
| 11 |
10
|
oveq2d |
|
| 12 |
|
simp1l |
|
| 13 |
|
simp2r |
|
| 14 |
13
|
nnnn0d |
|
| 15 |
|
expmul |
|
| 16 |
12 14 8 15
|
syl3anc |
|
| 17 |
11 16
|
eqtr3d |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
expcl |
|
| 20 |
12 14 19
|
syl2anc |
|
| 21 |
|
simp1r |
|
| 22 |
13
|
nnzd |
|
| 23 |
|
expne0i |
|
| 24 |
12 21 22 23
|
syl3anc |
|
| 25 |
8
|
nn0zd |
|
| 26 |
|
exprec |
|
| 27 |
20 24 25 26
|
syl3anc |
|
| 28 |
18 27
|
eqtr4d |
|
| 29 |
7 9
|
mulcld |
|
| 30 |
14 8
|
nn0mulcld |
|
| 31 |
10 30
|
eqeltrrd |
|
| 32 |
|
expneg2 |
|
| 33 |
12 29 31 32
|
syl3anc |
|
| 34 |
|
expneg2 |
|
| 35 |
12 7 14 34
|
syl3anc |
|
| 36 |
35
|
oveq1d |
|
| 37 |
28 33 36
|
3eqtr4d |
|
| 38 |
37
|
3expia |
|
| 39 |
5 38
|
jaodan |
|
| 40 |
|
simp2 |
|
| 41 |
40
|
nn0cnd |
|
| 42 |
|
simp3l |
|
| 43 |
42
|
recnd |
|
| 44 |
41 43
|
mulneg2d |
|
| 45 |
44
|
oveq2d |
|
| 46 |
|
simp1l |
|
| 47 |
|
simp3r |
|
| 48 |
47
|
nnnn0d |
|
| 49 |
|
expmul |
|
| 50 |
46 40 48 49
|
syl3anc |
|
| 51 |
45 50
|
eqtr3d |
|
| 52 |
51
|
oveq2d |
|
| 53 |
41 43
|
mulcld |
|
| 54 |
40 48
|
nn0mulcld |
|
| 55 |
44 54
|
eqeltrrd |
|
| 56 |
46 53 55 32
|
syl3anc |
|
| 57 |
|
expcl |
|
| 58 |
46 40 57
|
syl2anc |
|
| 59 |
|
expneg2 |
|
| 60 |
58 43 48 59
|
syl3anc |
|
| 61 |
52 56 60
|
3eqtr4d |
|
| 62 |
61
|
3expia |
|
| 63 |
|
simp1l |
|
| 64 |
|
simp2l |
|
| 65 |
64
|
recnd |
|
| 66 |
|
simp2r |
|
| 67 |
66
|
nnnn0d |
|
| 68 |
63 65 67 34
|
syl3anc |
|
| 69 |
68
|
oveq1d |
|
| 70 |
63 67 19
|
syl2anc |
|
| 71 |
|
simp1r |
|
| 72 |
66
|
nnzd |
|
| 73 |
63 71 72 23
|
syl3anc |
|
| 74 |
70 73
|
reccld |
|
| 75 |
|
simp3l |
|
| 76 |
75
|
recnd |
|
| 77 |
|
simp3r |
|
| 78 |
77
|
nnnn0d |
|
| 79 |
|
expneg2 |
|
| 80 |
74 76 78 79
|
syl3anc |
|
| 81 |
77
|
nnzd |
|
| 82 |
|
exprec |
|
| 83 |
70 73 81 82
|
syl3anc |
|
| 84 |
83
|
oveq2d |
|
| 85 |
|
expcl |
|
| 86 |
70 78 85
|
syl2anc |
|
| 87 |
|
expne0i |
|
| 88 |
70 73 81 87
|
syl3anc |
|
| 89 |
86 88
|
recrecd |
|
| 90 |
|
expmul |
|
| 91 |
63 67 78 90
|
syl3anc |
|
| 92 |
65 76
|
mul2negd |
|
| 93 |
92
|
oveq2d |
|
| 94 |
91 93
|
eqtr3d |
|
| 95 |
84 89 94
|
3eqtrd |
|
| 96 |
69 80 95
|
3eqtrrd |
|
| 97 |
96
|
3expia |
|
| 98 |
62 97
|
jaodan |
|
| 99 |
39 98
|
jaod |
|
| 100 |
2 99
|
sylan2b |
|
| 101 |
1 100
|
biimtrid |
|
| 102 |
101
|
impr |
|