Metamath Proof Explorer


Theorem expnass

Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010)

Ref Expression
Assertion expnass 3 3 3 < 3 3 3

Proof

Step Hyp Ref Expression
1 3cn 3
2 3nn0 3 0
3 expmul 3 3 0 3 0 3 3 3 = 3 3 3
4 1 2 2 3 mp3an 3 3 3 = 3 3 3
5 3re 3
6 2 2 nn0mulcli 3 3 0
7 6 nn0zi 3 3
8 2 2 nn0expcli 3 3 0
9 8 nn0zi 3 3
10 1lt3 1 < 3
11 1 sqvali 3 2 = 3 3
12 2z 2
13 3z 3
14 2lt3 2 < 3
15 ltexp2a 3 2 3 1 < 3 2 < 3 3 2 < 3 3
16 10 14 15 mpanr12 3 2 3 3 2 < 3 3
17 5 12 13 16 mp3an 3 2 < 3 3
18 11 17 eqbrtrri 3 3 < 3 3
19 ltexp2a 3 3 3 3 3 1 < 3 3 3 < 3 3 3 3 3 < 3 3 3
20 10 18 19 mpanr12 3 3 3 3 3 3 3 3 < 3 3 3
21 5 7 9 20 mp3an 3 3 3 < 3 3 3
22 4 21 eqbrtrri 3 3 3 < 3 3 3