| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
|
| 2 |
|
1re |
|
| 3 |
|
lttr |
|
| 4 |
2 3
|
mp3an2 |
|
| 5 |
4
|
exp4b |
|
| 6 |
5
|
com34 |
|
| 7 |
6
|
3imp1 |
|
| 8 |
|
recn |
|
| 9 |
|
exp1 |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
3ad2ant2 |
|
| 12 |
11
|
adantr |
|
| 13 |
7 12
|
breqtrrd |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
breq2d |
|
| 16 |
15
|
rspcev |
|
| 17 |
1 13 16
|
sylancr |
|
| 18 |
|
peano2rem |
|
| 19 |
18
|
adantr |
|
| 20 |
|
peano2rem |
|
| 21 |
20
|
adantr |
|
| 22 |
21
|
adantl |
|
| 23 |
|
posdif |
|
| 24 |
2 23
|
mpan |
|
| 25 |
24
|
biimpa |
|
| 26 |
25
|
gt0ne0d |
|
| 27 |
26
|
adantl |
|
| 28 |
19 22 27
|
redivcld |
|
| 29 |
28
|
adantll |
|
| 30 |
18
|
adantl |
|
| 31 |
|
subge0 |
|
| 32 |
2 31
|
mpan2 |
|
| 33 |
32
|
biimparc |
|
| 34 |
30 33
|
jca |
|
| 35 |
21 25
|
jca |
|
| 36 |
|
divge0 |
|
| 37 |
34 35 36
|
syl2an |
|
| 38 |
|
flge0nn0 |
|
| 39 |
29 37 38
|
syl2anc |
|
| 40 |
|
nn0p1nn |
|
| 41 |
39 40
|
syl |
|
| 42 |
|
simplr |
|
| 43 |
21
|
adantl |
|
| 44 |
|
peano2nn0 |
|
| 45 |
39 44
|
syl |
|
| 46 |
45
|
nn0red |
|
| 47 |
43 46
|
remulcld |
|
| 48 |
|
peano2re |
|
| 49 |
47 48
|
syl |
|
| 50 |
|
simprl |
|
| 51 |
|
reexpcl |
|
| 52 |
50 45 51
|
syl2anc |
|
| 53 |
|
flltp1 |
|
| 54 |
29 53
|
syl |
|
| 55 |
30
|
adantr |
|
| 56 |
25
|
adantl |
|
| 57 |
|
ltdivmul |
|
| 58 |
55 46 43 56 57
|
syl112anc |
|
| 59 |
54 58
|
mpbid |
|
| 60 |
|
ltsubadd |
|
| 61 |
2 60
|
mp3an2 |
|
| 62 |
42 47 61
|
syl2anc |
|
| 63 |
59 62
|
mpbid |
|
| 64 |
|
0lt1 |
|
| 65 |
|
0re |
|
| 66 |
|
lttr |
|
| 67 |
65 2 66
|
mp3an12 |
|
| 68 |
64 67
|
mpani |
|
| 69 |
|
ltle |
|
| 70 |
65 69
|
mpan |
|
| 71 |
68 70
|
syld |
|
| 72 |
71
|
imp |
|
| 73 |
72
|
adantl |
|
| 74 |
|
bernneq2 |
|
| 75 |
50 45 73 74
|
syl3anc |
|
| 76 |
42 49 52 63 75
|
ltletrd |
|
| 77 |
|
oveq2 |
|
| 78 |
77
|
breq2d |
|
| 79 |
78
|
rspcev |
|
| 80 |
41 76 79
|
syl2anc |
|
| 81 |
80
|
exp43 |
|
| 82 |
81
|
com4l |
|
| 83 |
82
|
3imp1 |
|
| 84 |
|
simp1 |
|
| 85 |
|
1red |
|
| 86 |
17 83 84 85
|
ltlecasei |
|