Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
|
2 |
|
1re |
|
3 |
|
lttr |
|
4 |
2 3
|
mp3an2 |
|
5 |
4
|
exp4b |
|
6 |
5
|
com34 |
|
7 |
6
|
3imp1 |
|
8 |
|
recn |
|
9 |
|
exp1 |
|
10 |
8 9
|
syl |
|
11 |
10
|
3ad2ant2 |
|
12 |
11
|
adantr |
|
13 |
7 12
|
breqtrrd |
|
14 |
|
oveq2 |
|
15 |
14
|
breq2d |
|
16 |
15
|
rspcev |
|
17 |
1 13 16
|
sylancr |
|
18 |
|
peano2rem |
|
19 |
18
|
adantr |
|
20 |
|
peano2rem |
|
21 |
20
|
adantr |
|
22 |
21
|
adantl |
|
23 |
|
posdif |
|
24 |
2 23
|
mpan |
|
25 |
24
|
biimpa |
|
26 |
25
|
gt0ne0d |
|
27 |
26
|
adantl |
|
28 |
19 22 27
|
redivcld |
|
29 |
28
|
adantll |
|
30 |
18
|
adantl |
|
31 |
|
subge0 |
|
32 |
2 31
|
mpan2 |
|
33 |
32
|
biimparc |
|
34 |
30 33
|
jca |
|
35 |
21 25
|
jca |
|
36 |
|
divge0 |
|
37 |
34 35 36
|
syl2an |
|
38 |
|
flge0nn0 |
|
39 |
29 37 38
|
syl2anc |
|
40 |
|
nn0p1nn |
|
41 |
39 40
|
syl |
|
42 |
|
simplr |
|
43 |
21
|
adantl |
|
44 |
|
peano2nn0 |
|
45 |
39 44
|
syl |
|
46 |
45
|
nn0red |
|
47 |
43 46
|
remulcld |
|
48 |
|
peano2re |
|
49 |
47 48
|
syl |
|
50 |
|
simprl |
|
51 |
|
reexpcl |
|
52 |
50 45 51
|
syl2anc |
|
53 |
|
flltp1 |
|
54 |
29 53
|
syl |
|
55 |
30
|
adantr |
|
56 |
25
|
adantl |
|
57 |
|
ltdivmul |
|
58 |
55 46 43 56 57
|
syl112anc |
|
59 |
54 58
|
mpbid |
|
60 |
|
ltsubadd |
|
61 |
2 60
|
mp3an2 |
|
62 |
42 47 61
|
syl2anc |
|
63 |
59 62
|
mpbid |
|
64 |
|
0lt1 |
|
65 |
|
0re |
|
66 |
|
lttr |
|
67 |
65 2 66
|
mp3an12 |
|
68 |
64 67
|
mpani |
|
69 |
|
ltle |
|
70 |
65 69
|
mpan |
|
71 |
68 70
|
syld |
|
72 |
71
|
imp |
|
73 |
72
|
adantl |
|
74 |
|
bernneq2 |
|
75 |
50 45 73 74
|
syl3anc |
|
76 |
42 49 52 63 75
|
ltletrd |
|
77 |
|
oveq2 |
|
78 |
77
|
breq2d |
|
79 |
78
|
rspcev |
|
80 |
41 76 79
|
syl2anc |
|
81 |
80
|
exp43 |
|
82 |
81
|
com4l |
|
83 |
82
|
3imp1 |
|
84 |
|
simp1 |
|
85 |
|
1red |
|
86 |
17 83 84 85
|
ltlecasei |
|