Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|
2 |
|
nnne0 |
|
3 |
2
|
adantl |
|
4 |
|
nncn |
|
5 |
4
|
adantl |
|
6 |
5
|
negeq0d |
|
7 |
6
|
necon3abid |
|
8 |
3 7
|
mpbid |
|
9 |
8
|
iffalsed |
|
10 |
|
nnnn0 |
|
11 |
10
|
adantl |
|
12 |
|
nn0nlt0 |
|
13 |
11 12
|
syl |
|
14 |
11
|
nn0red |
|
15 |
14
|
lt0neg1d |
|
16 |
13 15
|
mtbid |
|
17 |
16
|
iffalsed |
|
18 |
5
|
negnegd |
|
19 |
18
|
fveq2d |
|
20 |
19
|
oveq2d |
|
21 |
9 17 20
|
3eqtrd |
|
22 |
|
nnnegz |
|
23 |
|
expval |
|
24 |
22 23
|
sylan2 |
|
25 |
|
expnnval |
|
26 |
25
|
oveq2d |
|
27 |
21 24 26
|
3eqtr4d |
|
28 |
|
1div1e1 |
|
29 |
28
|
eqcomi |
|
30 |
|
negeq |
|
31 |
|
neg0 |
|
32 |
30 31
|
eqtrdi |
|
33 |
32
|
oveq2d |
|
34 |
|
exp0 |
|
35 |
33 34
|
sylan9eqr |
|
36 |
|
oveq2 |
|
37 |
36 34
|
sylan9eqr |
|
38 |
37
|
oveq2d |
|
39 |
29 35 38
|
3eqtr4a |
|
40 |
27 39
|
jaodan |
|
41 |
1 40
|
sylan2b |
|