| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|
| 2 |
|
nnne0 |
|
| 3 |
2
|
adantl |
|
| 4 |
|
nncn |
|
| 5 |
4
|
adantl |
|
| 6 |
5
|
negeq0d |
|
| 7 |
6
|
necon3abid |
|
| 8 |
3 7
|
mpbid |
|
| 9 |
8
|
iffalsed |
|
| 10 |
|
nnnn0 |
|
| 11 |
10
|
adantl |
|
| 12 |
|
nn0nlt0 |
|
| 13 |
11 12
|
syl |
|
| 14 |
11
|
nn0red |
|
| 15 |
14
|
lt0neg1d |
|
| 16 |
13 15
|
mtbid |
|
| 17 |
16
|
iffalsed |
|
| 18 |
5
|
negnegd |
|
| 19 |
18
|
fveq2d |
|
| 20 |
19
|
oveq2d |
|
| 21 |
9 17 20
|
3eqtrd |
|
| 22 |
|
nnnegz |
|
| 23 |
|
expval |
|
| 24 |
22 23
|
sylan2 |
|
| 25 |
|
expnnval |
|
| 26 |
25
|
oveq2d |
|
| 27 |
21 24 26
|
3eqtr4d |
|
| 28 |
|
1div1e1 |
|
| 29 |
28
|
eqcomi |
|
| 30 |
|
negeq |
|
| 31 |
|
neg0 |
|
| 32 |
30 31
|
eqtrdi |
|
| 33 |
32
|
oveq2d |
|
| 34 |
|
exp0 |
|
| 35 |
33 34
|
sylan9eqr |
|
| 36 |
|
oveq2 |
|
| 37 |
36 34
|
sylan9eqr |
|
| 38 |
37
|
oveq2d |
|
| 39 |
29 35 38
|
3eqtr4a |
|
| 40 |
27 39
|
jaodan |
|
| 41 |
1 40
|
sylan2b |
|