Metamath Proof Explorer


Theorem expnegd

Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
sqrecd.1 φ A 0
expclzd.3 φ N
Assertion expnegd φ A N = 1 A N

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 sqrecd.1 φ A 0
3 expclzd.3 φ N
4 expnegz A A 0 N A N = 1 A N
5 1 2 3 4 syl3anc φ A N = 1 A N