Metamath Proof Explorer


Theorem expnegz

Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expnegz A A 0 N A N = 1 A N

Proof

Step Hyp Ref Expression
1 elznn0 N N N 0 N 0
2 expneg A N 0 A N = 1 A N
3 2 ex A N 0 A N = 1 A N
4 3 ad2antrr A A 0 N N 0 A N = 1 A N
5 simpll A A 0 N N 0 A
6 simprl A A 0 N N 0 N
7 6 recnd A A 0 N N 0 N
8 simprr A A 0 N N 0 N 0
9 expneg2 A N N 0 A N = 1 A N
10 5 7 8 9 syl3anc A A 0 N N 0 A N = 1 A N
11 10 oveq2d A A 0 N N 0 1 A N = 1 1 A N
12 expcl A N 0 A N
13 12 ad2ant2rl A A 0 N N 0 A N
14 simplr A A 0 N N 0 A 0
15 8 nn0zd A A 0 N N 0 N
16 expne0i A A 0 N A N 0
17 5 14 15 16 syl3anc A A 0 N N 0 A N 0
18 13 17 recrecd A A 0 N N 0 1 1 A N = A N
19 11 18 eqtr2d A A 0 N N 0 A N = 1 A N
20 19 expr A A 0 N N 0 A N = 1 A N
21 4 20 jaod A A 0 N N 0 N 0 A N = 1 A N
22 21 expimpd A A 0 N N 0 N 0 A N = 1 A N
23 1 22 syl5bi A A 0 N A N = 1 A N
24 23 3impia A A 0 N A N = 1 A N