| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn0 |  | 
						
							| 2 |  | expneg |  | 
						
							| 3 | 2 | ex |  | 
						
							| 4 | 3 | ad2antrr |  | 
						
							| 5 |  | simpll |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 | 6 | recnd |  | 
						
							| 8 |  | simprr |  | 
						
							| 9 |  | expneg2 |  | 
						
							| 10 | 5 7 8 9 | syl3anc |  | 
						
							| 11 | 10 | oveq2d |  | 
						
							| 12 |  | expcl |  | 
						
							| 13 | 12 | ad2ant2rl |  | 
						
							| 14 |  | simplr |  | 
						
							| 15 | 8 | nn0zd |  | 
						
							| 16 |  | expne0i |  | 
						
							| 17 | 5 14 15 16 | syl3anc |  | 
						
							| 18 | 13 17 | recrecd |  | 
						
							| 19 | 11 18 | eqtr2d |  | 
						
							| 20 | 19 | expr |  | 
						
							| 21 | 4 20 | jaod |  | 
						
							| 22 | 21 | expimpd |  | 
						
							| 23 | 1 22 | biimtrid |  | 
						
							| 24 | 23 | 3impia |  |