Metamath Proof Explorer


Theorem expnlbnd

Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008)

Ref Expression
Assertion expnlbnd A + B 1 < B k 1 B k < A

Proof

Step Hyp Ref Expression
1 rpre A + A
2 rpne0 A + A 0
3 1 2 rereccld A + 1 A
4 expnbnd 1 A B 1 < B k 1 A < B k
5 3 4 syl3an1 A + B 1 < B k 1 A < B k
6 rpregt0 A + A 0 < A
7 6 3ad2ant1 A + B 1 < B A 0 < A
8 nnnn0 k k 0
9 reexpcl B k 0 B k
10 8 9 sylan2 B k B k
11 10 adantlr B 1 < B k B k
12 simpll B 1 < B k B
13 nnz k k
14 13 adantl B 1 < B k k
15 0lt1 0 < 1
16 0re 0
17 1re 1
18 lttr 0 1 B 0 < 1 1 < B 0 < B
19 16 17 18 mp3an12 B 0 < 1 1 < B 0 < B
20 15 19 mpani B 1 < B 0 < B
21 20 imp B 1 < B 0 < B
22 21 adantr B 1 < B k 0 < B
23 expgt0 B k 0 < B 0 < B k
24 12 14 22 23 syl3anc B 1 < B k 0 < B k
25 11 24 jca B 1 < B k B k 0 < B k
26 25 3adantl1 A + B 1 < B k B k 0 < B k
27 ltrec1 A 0 < A B k 0 < B k 1 A < B k 1 B k < A
28 7 26 27 syl2an2r A + B 1 < B k 1 A < B k 1 B k < A
29 28 rexbidva A + B 1 < B k 1 A < B k k 1 B k < A
30 5 29 mpbid A + B 1 < B k 1 B k < A