Metamath Proof Explorer


Theorem expnlbnd2

Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008) (Proof shortened by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion expnlbnd2 A + B 1 < B j k j 1 B k < A

Proof

Step Hyp Ref Expression
1 expnlbnd A + B 1 < B j 1 B j < A
2 simpl2 A + B 1 < B j k j B
3 simpl3 A + B 1 < B j k j 1 < B
4 1re 1
5 ltle 1 B 1 < B 1 B
6 4 2 5 sylancr A + B 1 < B j k j 1 < B 1 B
7 3 6 mpd A + B 1 < B j k j 1 B
8 simprr A + B 1 < B j k j k j
9 leexp2a B 1 B k j B j B k
10 2 7 8 9 syl3anc A + B 1 < B j k j B j B k
11 0red A + B 1 < B j k j 0
12 1red A + B 1 < B j k j 1
13 0lt1 0 < 1
14 13 a1i A + B 1 < B j k j 0 < 1
15 11 12 2 14 3 lttrd A + B 1 < B j k j 0 < B
16 2 15 elrpd A + B 1 < B j k j B +
17 nnz j j
18 17 ad2antrl A + B 1 < B j k j j
19 rpexpcl B + j B j +
20 16 18 19 syl2anc A + B 1 < B j k j B j +
21 eluzelz k j k
22 21 ad2antll A + B 1 < B j k j k
23 rpexpcl B + k B k +
24 16 22 23 syl2anc A + B 1 < B j k j B k +
25 20 24 lerecd A + B 1 < B j k j B j B k 1 B k 1 B j
26 10 25 mpbid A + B 1 < B j k j 1 B k 1 B j
27 24 rprecred A + B 1 < B j k j 1 B k
28 20 rprecred A + B 1 < B j k j 1 B j
29 simpl1 A + B 1 < B j k j A +
30 29 rpred A + B 1 < B j k j A
31 lelttr 1 B k 1 B j A 1 B k 1 B j 1 B j < A 1 B k < A
32 27 28 30 31 syl3anc A + B 1 < B j k j 1 B k 1 B j 1 B j < A 1 B k < A
33 26 32 mpand A + B 1 < B j k j 1 B j < A 1 B k < A
34 33 anassrs A + B 1 < B j k j 1 B j < A 1 B k < A
35 34 ralrimdva A + B 1 < B j 1 B j < A k j 1 B k < A
36 35 reximdva A + B 1 < B j 1 B j < A j k j 1 B k < A
37 1 36 mpd A + B 1 < B j k j 1 B k < A