Metamath Proof Explorer


Theorem expnngt1

Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022)

Ref Expression
Assertion expnngt1 A B 1 < A B B

Proof

Step Hyp Ref Expression
1 elznn B B B B 0
2 2a1 B A 1 < A B B
3 2 a1d B B A 1 < A B B
4 nncn A A
5 4 3ad2ant3 B 0 B A A
6 recn B B
7 6 3ad2ant2 B 0 B A B
8 simp1 B 0 B A B 0
9 expneg2 A B B 0 A B = 1 A B
10 5 7 8 9 syl3anc B 0 B A A B = 1 A B
11 10 breq2d B 0 B A 1 < A B 1 < 1 A B
12 nnre A A
13 reexpcl A B 0 A B
14 12 13 sylan A B 0 A B
15 14 ancoms B 0 A A B
16 12 adantl B 0 A A
17 nn0z B 0 B
18 17 adantr B 0 A B
19 nngt0 A 0 < A
20 19 adantl B 0 A 0 < A
21 expgt0 A B 0 < A 0 < A B
22 16 18 20 21 syl3anc B 0 A 0 < A B
23 15 22 jca B 0 A A B 0 < A B
24 23 3adant2 B 0 B A A B 0 < A B
25 reclt1 A B 0 < A B A B < 1 1 < 1 A B
26 24 25 syl B 0 B A A B < 1 1 < 1 A B
27 12 3ad2ant3 B 0 B A A
28 nnge1 A 1 A
29 28 3ad2ant3 B 0 B A 1 A
30 27 8 29 expge1d B 0 B A 1 A B
31 1red B 0 B A 1
32 15 3adant2 B 0 B A A B
33 31 32 lenltd B 0 B A 1 A B ¬ A B < 1
34 pm2.21 ¬ A B < 1 A B < 1 B
35 33 34 syl6bi B 0 B A 1 A B A B < 1 B
36 30 35 mpd B 0 B A A B < 1 B
37 26 36 sylbird B 0 B A 1 < 1 A B B
38 11 37 sylbid B 0 B A 1 < A B B
39 38 3exp B 0 B A 1 < A B B
40 3 39 jaoi B B 0 B A 1 < A B B
41 40 impcom B B B 0 A 1 < A B B
42 1 41 sylbi B A 1 < A B B
43 42 3imp21 A B 1 < A B B