Metamath Proof Explorer


Theorem expnngt1b

Description: An integer power with an integer base greater than 1 is greater than 1 iff the exponent is positive. (Contributed by AV, 28-Dec-2022)

Ref Expression
Assertion expnngt1b A 2 B 1 < A B B

Proof

Step Hyp Ref Expression
1 eluz2nn A 2 A
2 1 adantr A 2 B A
3 2 adantr A 2 B 1 < A B A
4 simplr A 2 B 1 < A B B
5 simpr A 2 B 1 < A B 1 < A B
6 expnngt1 A B 1 < A B B
7 3 4 5 6 syl3anc A 2 B 1 < A B B
8 2 nnred A 2 B A
9 8 adantr A 2 B B A
10 simpr A 2 B B B
11 eluz2gt1 A 2 1 < A
12 11 adantr A 2 B 1 < A
13 12 adantr A 2 B B 1 < A
14 expgt1 A B 1 < A 1 < A B
15 9 10 13 14 syl3anc A 2 B B 1 < A B
16 7 15 impbida A 2 B 1 < A B B