Metamath Proof Explorer


Theorem expnnval

Description: Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expnnval A N A N = seq 1 × × A N

Proof

Step Hyp Ref Expression
1 nnz N N
2 expval A N A N = if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N
3 1 2 sylan2 A N A N = if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N
4 nnne0 N N 0
5 4 neneqd N ¬ N = 0
6 5 iffalsed N if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N = if 0 < N seq 1 × × A N 1 seq 1 × × A N
7 nngt0 N 0 < N
8 7 iftrued N if 0 < N seq 1 × × A N 1 seq 1 × × A N = seq 1 × × A N
9 6 8 eqtrd N if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N = seq 1 × × A N
10 9 adantl A N if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N = seq 1 × × A N
11 3 10 eqtrd A N A N = seq 1 × × A N