Metamath Proof Explorer


Theorem expp1zd

Description: Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
sqrecd.1 φ A 0
expclzd.3 φ N
Assertion expp1zd φ A N + 1 = A N A

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 sqrecd.1 φ A 0
3 expclzd.3 φ N
4 expp1z A A 0 N A N + 1 = A N A
5 1 2 3 4 syl3anc φ A N + 1 = A N A