Metamath Proof Explorer


Theorem exprec

Description: Integer exponentiation of a reciprocal. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion exprec A A 0 N 1 A N = 1 A N

Proof

Step Hyp Ref Expression
1 expclz A A 0 N A N
2 reccl A A 0 1 A
3 2 3adant3 A A 0 N 1 A
4 recne0 A A 0 1 A 0
5 4 3adant3 A A 0 N 1 A 0
6 simp3 A A 0 N N
7 expclz 1 A 1 A 0 N 1 A N
8 3 5 6 7 syl3anc A A 0 N 1 A N
9 expne0i A A 0 N A N 0
10 simp1 A A 0 N A
11 simp2 A A 0 N A 0
12 10 11 recidd A A 0 N A 1 A = 1
13 12 oveq1d A A 0 N A 1 A N = 1 N
14 mulexpz A A 0 1 A 1 A 0 N A 1 A N = A N 1 A N
15 10 11 3 5 6 14 syl221anc A A 0 N A 1 A N = A N 1 A N
16 1exp N 1 N = 1
17 6 16 syl A A 0 N 1 N = 1
18 13 15 17 3eqtr3d A A 0 N A N 1 A N = 1
19 1 8 9 18 mvllmuld A A 0 N 1 A N = 1 A N