Metamath Proof Explorer


Theorem exprelprel

Description: If there is an element of the set of subsets with two elements in a set, an unordered pair of sets is in the set. (Contributed by Alexander van der Vekens, 12-Jul-2018)

Ref Expression
Assertion exprelprel p e 𝒫 V | e = 2 p X v V w V v w X

Proof

Step Hyp Ref Expression
1 elss2prb p e 𝒫 V | e = 2 v V w V v w p = v w
2 eleq1 p = v w p X v w X
3 2 adantl v w p = v w p X v w X
4 3 biimpcd p X v w p = v w v w X
5 4 reximdv p X w V v w p = v w w V v w X
6 5 reximdv p X v V w V v w p = v w v V w V v w X
7 6 com12 v V w V v w p = v w p X v V w V v w X
8 1 7 sylbi p e 𝒫 V | e = 2 p X v V w V v w X
9 8 rexlimiv p e 𝒫 V | e = 2 p X v V w V v w X