Metamath Proof Explorer


Theorem expsub

Description: Exponent subtraction law for integer exponentiation. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expsub A A 0 M N A M N = A M A N

Proof

Step Hyp Ref Expression
1 znegcl N N
2 expaddz A A 0 M N A M + -N = A M A N
3 1 2 sylanr2 A A 0 M N A M + -N = A M A N
4 zcn M M
5 zcn N N
6 negsub M N M + -N = M N
7 4 5 6 syl2an M N M + -N = M N
8 7 adantl A A 0 M N M + -N = M N
9 8 oveq2d A A 0 M N A M + -N = A M N
10 expnegz A A 0 N A N = 1 A N
11 10 3expa A A 0 N A N = 1 A N
12 11 adantrl A A 0 M N A N = 1 A N
13 12 oveq2d A A 0 M N A M A N = A M 1 A N
14 expclz A A 0 M A M
15 14 3expa A A 0 M A M
16 15 adantrr A A 0 M N A M
17 expclz A A 0 N A N
18 17 3expa A A 0 N A N
19 18 adantrl A A 0 M N A N
20 expne0i A A 0 N A N 0
21 20 3expa A A 0 N A N 0
22 21 adantrl A A 0 M N A N 0
23 16 19 22 divrecd A A 0 M N A M A N = A M 1 A N
24 13 23 eqtr4d A A 0 M N A M A N = A M A N
25 3 9 24 3eqtr3d A A 0 M N A M N = A M A N