Metamath Proof Explorer


Theorem expsubd

Description: Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
sqrecd.1 φ A 0
expclzd.3 φ N
expsubd.3 φ M
Assertion expsubd φ A M N = A M A N

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 sqrecd.1 φ A 0
3 expclzd.3 φ N
4 expsubd.3 φ M
5 expsub A A 0 M N A M N = A M A N
6 1 2 4 3 5 syl22anc φ A M N = A M A N