Metamath Proof Explorer


Theorem expval

Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expval A N A N = if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N

Proof

Step Hyp Ref Expression
1 simpr x = A y = N y = N
2 1 eqeq1d x = A y = N y = 0 N = 0
3 1 breq2d x = A y = N 0 < y 0 < N
4 simpl x = A y = N x = A
5 4 sneqd x = A y = N x = A
6 5 xpeq2d x = A y = N × x = × A
7 6 seqeq3d x = A y = N seq 1 × × x = seq 1 × × A
8 7 1 fveq12d x = A y = N seq 1 × × x y = seq 1 × × A N
9 1 negeqd x = A y = N y = N
10 7 9 fveq12d x = A y = N seq 1 × × x y = seq 1 × × A N
11 10 oveq2d x = A y = N 1 seq 1 × × x y = 1 seq 1 × × A N
12 3 8 11 ifbieq12d x = A y = N if 0 < y seq 1 × × x y 1 seq 1 × × x y = if 0 < N seq 1 × × A N 1 seq 1 × × A N
13 2 12 ifbieq2d x = A y = N if y = 0 1 if 0 < y seq 1 × × x y 1 seq 1 × × x y = if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N
14 df-exp ^ = x , y if y = 0 1 if 0 < y seq 1 × × x y 1 seq 1 × × x y
15 1ex 1 V
16 fvex seq 1 × × A N V
17 ovex 1 seq 1 × × A N V
18 16 17 ifex if 0 < N seq 1 × × A N 1 seq 1 × × A N V
19 15 18 ifex if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N V
20 13 14 19 ovmpoa A N A N = if N = 0 1 if 0 < N seq 1 × × A N 1 seq 1 × × A N