| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exrecfnlem.1 |
|
| 2 |
|
rdg0g |
|
| 3 |
|
peano1 |
|
| 4 |
|
omelon |
|
| 5 |
|
limom |
|
| 6 |
|
rdglimss |
|
| 7 |
4 5 6
|
mpanl12 |
|
| 8 |
3 7
|
ax-mp |
|
| 9 |
2 8
|
eqsstrrdi |
|
| 10 |
|
rdglim2a |
|
| 11 |
4 5 10
|
mp2an |
|
| 12 |
11
|
eleq2i |
|
| 13 |
|
eliun |
|
| 14 |
12 13
|
bitri |
|
| 15 |
|
peano2 |
|
| 16 |
|
nnon |
|
| 17 |
|
eqid |
|
| 18 |
17
|
elrnmpt1 |
|
| 19 |
|
elun2 |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
fvex |
|
| 22 |
|
nfcv |
|
| 23 |
|
nfcv |
|
| 24 |
|
nfmpt1 |
|
| 25 |
24
|
nfrn |
|
| 26 |
23 25
|
nfun |
|
| 27 |
22 26
|
nfmpt |
|
| 28 |
1 27
|
nfcxfr |
|
| 29 |
|
nfcv |
|
| 30 |
28 29
|
nfrdg |
|
| 31 |
|
nfcv |
|
| 32 |
30 31
|
nffv |
|
| 33 |
32
|
mptexgf |
|
| 34 |
21 33
|
ax-mp |
|
| 35 |
34
|
rnex |
|
| 36 |
21 35
|
unex |
|
| 37 |
|
nfcv |
|
| 38 |
|
nfcv |
|
| 39 |
|
nfmpt1 |
|
| 40 |
1 39
|
nfcxfr |
|
| 41 |
40 37
|
nfrdg |
|
| 42 |
41 38
|
nffv |
|
| 43 |
|
nfcv |
|
| 44 |
42 43
|
nfmpt |
|
| 45 |
44
|
nfrn |
|
| 46 |
42 45
|
nfun |
|
| 47 |
|
rdgeq1 |
|
| 48 |
1 47
|
ax-mp |
|
| 49 |
|
id |
|
| 50 |
32
|
nfeq2 |
|
| 51 |
|
eqidd |
|
| 52 |
50 49 51
|
mpteq12df |
|
| 53 |
52
|
rneqd |
|
| 54 |
49 53
|
uneq12d |
|
| 55 |
37 38 46 48 54
|
rdgsucmptf |
|
| 56 |
36 55
|
mpan2 |
|
| 57 |
56
|
eleq2d |
|
| 58 |
20 57
|
imbitrrid |
|
| 59 |
16 58
|
syl |
|
| 60 |
|
rdgellim |
|
| 61 |
4 5 60
|
mpanl12 |
|
| 62 |
15 59 61
|
sylsyld |
|
| 63 |
62
|
expd |
|
| 64 |
63
|
com3r |
|
| 65 |
64
|
rexlimdv |
|
| 66 |
14 65
|
biimtrid |
|
| 67 |
66
|
alimi |
|
| 68 |
|
df-ral |
|
| 69 |
67 68
|
sylibr |
|
| 70 |
|
fvex |
|
| 71 |
|
sseq2 |
|
| 72 |
|
nfcv |
|
| 73 |
30 72
|
nffv |
|
| 74 |
73
|
nfeq2 |
|
| 75 |
|
eleq2 |
|
| 76 |
|
eleq2 |
|
| 77 |
75 76
|
imbi12d |
|
| 78 |
74 77
|
albid |
|
| 79 |
|
df-ral |
|
| 80 |
78 79 68
|
3bitr4g |
|
| 81 |
71 80
|
anbi12d |
|
| 82 |
70 81
|
spcev |
|
| 83 |
9 69 82
|
syl2an |
|