Metamath Proof Explorer


Theorem exsb

Description: An equivalent expression for existence. One direction ( exsbim ) needs fewer axioms. (Contributed by NM, 2-Feb-2005) Avoid ax-13 . (Revised by Wolf Lammen, 16-Oct-2022)

Ref Expression
Assertion exsb x φ y x x = y φ

Proof

Step Hyp Ref Expression
1 nfv y φ
2 nfa1 x x x = y φ
3 ax12v x = y φ x x = y φ
4 sp x x = y φ x = y φ
5 4 com12 x = y x x = y φ φ
6 3 5 impbid x = y φ x x = y φ
7 1 2 6 cbvexv1 x φ y x x = y φ