Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
exse
Next ⟩
dffr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
exse
Description:
Any relation on a set is set-like on it.
(Contributed by
Mario Carneiro
, 22-Jun-2015)
Ref
Expression
Assertion
exse
⊢
A
∈
V
→
R
Se
A
Proof
Step
Hyp
Ref
Expression
1
rabexg
⊢
A
∈
V
→
y
∈
A
|
y
R
x
∈
V
2
1
ralrimivw
⊢
A
∈
V
→
∀
x
∈
A
y
∈
A
|
y
R
x
∈
V
3
df-se
⊢
R
Se
A
↔
∀
x
∈
A
y
∈
A
|
y
R
x
∈
V
4
2
3
sylibr
⊢
A
∈
V
→
R
Se
A