Metamath Proof Explorer


Theorem exse

Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion exse AVRSeA

Proof

Step Hyp Ref Expression
1 rabexg AVyA|yRxV
2 1 ralrimivw AVxAyA|yRxV
3 df-se RSeAxAyA|yRxV
4 2 3 sylibr AVRSeA