Metamath Proof Explorer


Theorem exse

Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion exse A V R Se A

Proof

Step Hyp Ref Expression
1 rabexg A V y A | y R x V
2 1 ralrimivw A V x A y A | y R x V
3 df-se R Se A x A y A | y R x V
4 2 3 sylibr A V R Se A