Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exsnrex | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vsnid | ||
| 2 | eleq2 | ||
| 3 | 1 2 | mpbiri | |
| 4 | 3 | pm4.71ri | |
| 5 | 4 | exbii | |
| 6 | df-rex | ||
| 7 | 5 6 | bitr4i |