Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | exsnrex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid | ||
2 | eleq2 | ||
3 | 1 2 | mpbiri | |
4 | 3 | pm4.71ri | |
5 | 4 | exbii | |
6 | df-rex | ||
7 | 5 6 | bitr4i |