Metamath Proof Explorer


Theorem exss

Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003)

Ref Expression
Assertion exss x A φ y y A x y φ

Proof

Step Hyp Ref Expression
1 df-rab x A | φ = x | x A φ
2 1 neeq1i x A | φ x | x A φ
3 rabn0 x A | φ x A φ
4 n0 x | x A φ z z x | x A φ
5 2 3 4 3bitr3i x A φ z z x | x A φ
6 vex z V
7 6 snss z x | x A φ z x | x A φ
8 ssab2 x | x A φ A
9 sstr2 z x | x A φ x | x A φ A z A
10 8 9 mpi z x | x A φ z A
11 7 10 sylbi z x | x A φ z A
12 simpr z x x A z x φ z x φ
13 equsb1v z x x = z
14 velsn x z x = z
15 14 sbbii z x x z z x x = z
16 13 15 mpbir z x x z
17 12 16 jctil z x x A z x φ z x x z z x φ
18 df-clab z x | x A φ z x x A φ
19 sban z x x A φ z x x A z x φ
20 18 19 bitri z x | x A φ z x x A z x φ
21 df-rab x z | φ = x | x z φ
22 21 eleq2i z x z | φ z x | x z φ
23 df-clab z x | x z φ z x x z φ
24 sban z x x z φ z x x z z x φ
25 22 23 24 3bitri z x z | φ z x x z z x φ
26 17 20 25 3imtr4i z x | x A φ z x z | φ
27 26 ne0d z x | x A φ x z | φ
28 rabn0 x z | φ x z φ
29 27 28 sylib z x | x A φ x z φ
30 snex z V
31 sseq1 y = z y A z A
32 rexeq y = z x y φ x z φ
33 31 32 anbi12d y = z y A x y φ z A x z φ
34 30 33 spcev z A x z φ y y A x y φ
35 11 29 34 syl2anc z x | x A φ y y A x y φ
36 35 exlimiv z z x | x A φ y y A x y φ
37 5 36 sylbi x A φ y y A x y φ