| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extmptsuppeq.b |
|
| 2 |
|
extmptsuppeq.a |
|
| 3 |
|
extmptsuppeq.z |
|
| 4 |
2
|
adantl |
|
| 5 |
4
|
sseld |
|
| 6 |
5
|
anim1d |
|
| 7 |
|
eldif |
|
| 8 |
3
|
adantll |
|
| 9 |
7 8
|
sylan2br |
|
| 10 |
9
|
expr |
|
| 11 |
|
elsn2g |
|
| 12 |
|
elndif |
|
| 13 |
11 12
|
biimtrrdi |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
10 14
|
syld |
|
| 16 |
15
|
con4d |
|
| 17 |
16
|
impr |
|
| 18 |
|
simprr |
|
| 19 |
17 18
|
jca |
|
| 20 |
19
|
ex |
|
| 21 |
6 20
|
impbid |
|
| 22 |
21
|
rabbidva2 |
|
| 23 |
|
eqid |
|
| 24 |
1 2
|
ssexd |
|
| 25 |
24
|
adantl |
|
| 26 |
|
simpl |
|
| 27 |
23 25 26
|
mptsuppdifd |
|
| 28 |
|
eqid |
|
| 29 |
1
|
adantl |
|
| 30 |
28 29 26
|
mptsuppdifd |
|
| 31 |
22 27 30
|
3eqtr4d |
|
| 32 |
31
|
ex |
|
| 33 |
|
simpr |
|
| 34 |
|
supp0prc |
|
| 35 |
33 34
|
nsyl5 |
|
| 36 |
|
simpr |
|
| 37 |
|
supp0prc |
|
| 38 |
36 37
|
nsyl5 |
|
| 39 |
35 38
|
eqtr4d |
|
| 40 |
39
|
a1d |
|
| 41 |
32 40
|
pm2.61i |
|