Metamath Proof Explorer


Theorem extwwlkfabel

Description: Characterization of an element of the set ( X C N ) , i.e., a double loop of length N on vertex X with a construction from the set F of closed walks on X with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). (Contributed by AV, 22-Feb-2022) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v V = Vtx G
extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
extwwlkfab.f F = X ClWWalksNOn G N 2
Assertion extwwlkfabel G USGraph X V N 3 W X C N W N ClWWalksN G W prefix N 2 F W N 1 G NeighbVtx X W N 2 = X

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V = Vtx G
2 extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
3 extwwlkfab.f F = X ClWWalksNOn G N 2
4 1 2 3 extwwlkfab G USGraph X V N 3 X C N = w N ClWWalksN G | w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X
5 4 eleq2d G USGraph X V N 3 W X C N W w N ClWWalksN G | w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X
6 oveq1 w = W w prefix N 2 = W prefix N 2
7 6 eleq1d w = W w prefix N 2 F W prefix N 2 F
8 fveq1 w = W w N 1 = W N 1
9 8 eleq1d w = W w N 1 G NeighbVtx X W N 1 G NeighbVtx X
10 fveq1 w = W w N 2 = W N 2
11 10 eqeq1d w = W w N 2 = X W N 2 = X
12 7 9 11 3anbi123d w = W w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X W prefix N 2 F W N 1 G NeighbVtx X W N 2 = X
13 12 elrab W w N ClWWalksN G | w prefix N 2 F w N 1 G NeighbVtx X w N 2 = X W N ClWWalksN G W prefix N 2 F W N 1 G NeighbVtx X W N 2 = X
14 5 13 syl6bb G USGraph X V N 3 W X C N W N ClWWalksN G W prefix N 2 F W N 1 G NeighbVtx X W N 2 = X